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UNIT – 1 

1.1. THE DEFINITION AND SOME EXAMPLES 

We begin by restating the definition of a Banach space. 

A normed linear space is a linear space 𝑁 in which to each vector 𝑥 there corresponds a 

real number, denoted by ‖𝑥‖ and called the norm of 𝑥, in such a manner that  

(1) ‖𝑥‖ >  0, and ‖𝑥‖ =  0 ⇔ 𝑥 =  0;  

(2) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖; 

(3) ‖𝛼𝑥‖ = |𝛼|‖𝑥‖, 

The non-negative real number ‖𝑥‖ is to be thought of as the length of the vector 𝑥. If we 

regard ‖𝑥‖ as a real function defined on 𝑁, this function is called the norm on 𝑁. It is easy to 

verify that the normed linear space 𝑁 is a metric space with respect to the metric 𝑑 defined by 

𝑑(𝑥, 𝑦) =  ‖𝑥 − 𝑦‖. A Banach space is a complete normed linear space. Our main interest in this 

chapter is in Banach spaces, but there are several points in the body of the theory at which it is 

convenient to have the basic definitions and some of the simpler facts formulated in terms of 

normed linear spaces. For this reason, and also to emphasize the role of completeness in 

theorems which require this assumption, we work in the more general context whenever 

possible. The reader will find that the deeper theorems, in which completeness hypotheses are 

necessary, often make essential use of Baire’s theorem.  

Several simple but important facts about a normed linear space are based on the 

following inequality:  

|‖𝑥‖ − ‖𝑦‖| ≤ ‖𝑥 − 𝑦‖ 
(1) 

To prove this, it suffices to prove that  

‖𝑥‖ − ‖𝑦‖ ≤ ‖𝑥 − 𝑦‖ (2) 

for it follows from (2) that we also have  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      4 
 

−(‖𝑥‖ − ‖𝑦‖) = ‖𝑦‖ − ‖𝑥‖ ≤ ‖𝑦 − 𝑥‖ = ‖−(𝑥 − 𝑦)‖ = ‖𝑥 − 𝑦‖, 

which together with (2) yields (1). We now prove (2) by observing that ‖𝑥‖ =

‖(𝑥 − 𝑦) + 𝑦‖ ≤ ‖𝑥 − 𝑦‖ + ‖𝑦‖. The main conclusion we draw from (1) is that the norm is a 

continuous function: 

𝑥𝑛 → 𝑥 ⇒ ‖𝑥𝑛‖ → ‖𝑥‖. 

This is clear from the fact that|‖𝑥𝑛‖ − ‖𝑥‖| ≤ ‖𝑥𝑛 − 𝑥‖, since 𝑥𝑛 → 𝑥 means that‖𝑥𝑛 −

𝑥‖ → 0. In the same vein, we can prove that addition and scalar multiplication are jointly 

continuous (see Problem 22-5), for  

𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦 ⇒ 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦 

𝛼𝑛 → 𝛼 and 𝑥𝑛 → 𝑥 ⇒ 𝛼𝑛𝑥𝑛 → 𝛼𝑥 

These assertions follow from  

‖(𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦)‖ = ‖(𝑥𝑛 − 𝑥) + (𝑦𝑛 − 𝑦)‖ ≤ ‖𝑥𝑛 − 𝑥‖ + ‖𝑦𝑛 − 𝑦‖ 

and  

‖𝛼𝑛𝑥𝑛 − 𝛼𝑥‖ = ‖𝛼𝑛(𝑥𝑛 − 𝑥) + (𝛼𝑛 − 𝛼)𝑥‖ ≤ |𝛼𝑛|‖𝑥𝑛 − 𝑥‖ + |𝛼𝑛 − 𝛼|‖𝑥‖. 

Our first theorem exhibits one of the most useful ways of forming new normed linear 

spaces out of old ones.  

Theorem 1.1 : Let 𝑀 be a closed linear subspace of a normed linear space 𝑁. If the norm of a 

coset 𝑥 +  𝑀 in the quotient space 
𝑁

𝑀
 is defined by  

‖𝑥 + 𝑀‖ = inf{‖𝑥 + 𝑚‖: 𝑚 ∈ 𝑀}, (3) 

then 
𝑁

𝑀
 is a normed linear space. Further, if 𝑁 is a Banach space, then so is 

𝑁

𝑀
.  
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Proof.  

We first verify that (3) defines a norm in the required sense. It is obvious that ‖𝑥 + 𝑀‖ ≥

0; and since 𝑀 is closed, it is easy to see that ‖𝑥 + 𝑀‖ = 0 ⇔ there exists a sequence {𝑚𝑘} in 𝑀 

such that ‖𝑥 + 𝑚𝑘‖ → 0 ⇔ 𝑥isin 𝑀 ⇔ 𝑥 + 𝑀 = 𝑀 = the zero element of
𝑁

𝑀
. Next, we have  

‖(𝑥 + 𝑀) + (𝑦 + 𝑀)‖ = ‖(𝑥 + 𝑦) + 𝑀‖ 

= inf{‖𝑥 + 𝑦 + 𝑚‖: 𝑚 ∈ 𝑀} 

= inf{‖𝑥 + 𝑦 + 𝑚 + 𝑚′‖: 𝑚 &𝑚′ ∈ 𝑀} 

       = inf{‖(𝑥 + 𝑚) + (𝑦 + 𝑚′)‖: 𝑚 &𝑚′ ∈ 𝑀} 

     ≤ inf{‖𝑥 + 𝑚‖ + ‖𝑦 + 𝑚′‖: 𝑚 &𝑚′ ∈ 𝑀} 

                     = inf{‖𝑥 + 𝑚‖: 𝑚 ∈ 𝑀} + inf{‖𝑦 + 𝑚′‖: 𝑚′ ∈ 𝑀} 

= ‖𝑥 + 𝑀‖ + ‖𝑦 + 𝑀‖.                              

The proof of ‖𝛼(𝑥 + 𝑀)‖ = |𝛼|‖𝑥 + 𝑀‖ is similar.  

Finally, we assume that 𝑁 is complete, and we show that 
𝑁

𝑀
 is also complete. If we start 

with a Cauchy sequence in 
𝑁

𝑀
, then by Problem 12-2 it suffices to show that this sequence has a 

convergent sub- sequence.  

It is clearly possible to find a subsequence {𝑥𝑛 +  𝑀} of the original Cauchy sequence 

such that ‖(𝑥1 + 𝑀) − (𝑥2 + 𝑀)‖ <
1

2
, ‖(𝑥2 + 𝑀) − (𝑥3 + 𝑀)‖ <

1

4
, and, in general, ‖(𝑥𝑛 +

𝑀) − (𝑥𝑛+1 + 𝑀)‖ <
1

2𝑛.  

We prove that this sequence is convergent in 
𝑁

𝑀
. We begin by choosing any vector 𝑦1 

in𝑥1 + 𝑀, and we select 𝑦2 in𝑥2 + 𝑀 such that‖𝑦1 − 𝑦2‖ <
1

2
.  
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We next select a vector 𝑦3 in 𝑥3 + 𝑀 such that ‖𝑦2 − 𝑦3‖ <
1

4
. Continuing in this way, 

we obtain a sequence {𝑦𝑛} in 𝑁 such that ‖𝑦𝑛 − 𝑦𝑛+1‖ <
1

2𝑛. If'𝑚 < 𝑛, then  

‖𝑦𝑚 − 𝑦𝑛‖ = ‖(𝑦𝑚 − 𝑦𝑚+1) + (𝑦𝑚+1 + 𝑦𝑚+2) + ⋯ + (𝑦𝑛−1 − 𝑦𝑛)‖ 

            ≤ ‖𝑦𝑚 − 𝑦𝑚+1‖ + ‖𝑦𝑚+1 + 𝑦𝑚+2‖ + ⋯ + ‖𝑦𝑛−1 − 𝑦𝑛‖ 

<
1

2𝑚
+

1

2𝑚+1
+ ⋯ +

1

2𝑛−1
 

<
1

2𝑚−1
 

so {𝑦𝑛} is a Cauchy sequence in 𝑁. Since 𝑁 is complete, there exists a vector 𝑦 in 𝑁 such 

that 𝑦𝑛 → 𝑦. It now follows from ‖(𝑥𝑛 + 𝑀) − (𝑦 + 𝑀)‖ ≤ ‖𝑦𝑛 − 𝑦‖ that𝑥𝑛 + 𝑀 → 𝑦 + 𝑀,so 

𝑁

𝑀
 is complete.  

In the following sections and chapters, we shall often have occasion to consider the 

quotient space of a normed linear space with respect to a closed linear subspace. In accordance 

with our theorem, a quotient space of this kind can always be regarded as a normed linear space 

in its own right.  

We now describe some of the main examples of Banach spaces. In each of these, the 

linear operations are understood to be defined either coordinatewise or pointwise, whichever is 

appropriate in the circumstances.  

Example 1. The spaces R and C—the real numbers and the complex numbers—are the simplest 

of all normed linear spaces. The norm of a number 𝑥 is of course defined by ‖𝑥‖ = |𝑥|, and each 

space is a Banach space.  

Example 2. The linear spaces 𝑅𝑛 and 𝐶𝑛 of all 𝑛-tuples 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)of real and complex 

numbers can be made into normed linear spaces in an infinite variety of ways, as we shall see 

below. If the norm is defined by  
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‖𝑥‖ = (∑|𝑥𝑖|
2

𝑛

𝑖=1

)

1

2

 (4) 

then we get the 𝑛-dimensional Euclidean and unitary spaces familiar to us from our 

earlier work. We denoted these spaces by 𝑅𝑛 and 𝐶𝑛 in Part 1 of the text book, and we know by 

the theorems of Sec. 15 that both are Banach spaces.  

Each of the following examples consists of n-tuples of scalars, sequences of scalars, or 

scalar-valued functions defined on some non- empty set, where the scalars are the real numbers 

or the complex numbers. We do not normally specify which system of scalars is to be used, and 

it should be emphasized that both possibilities are allowed unless the contrary is clearly stated. 

Also, we make no distinction in notation between the real case and the complex case. When it 

turns out to be necessary to distinguish these two cases, we do so verbally, by referring, for 

instance, to ‘‘the complex space —.’’ These conventions are in accord with the standard usage 

preferred by most mathematicians, and they enable us to avoid a good deal of cumbersome 

notation and many unnecessary case distinctions.  

Example 3. Let p be a real number such that1 ≤ 𝑝 < ∞. We denote by 𝑙𝑝
𝑛 the space of all 𝑛-

tuples 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)of scalars, with the norm defined by  

‖𝑥‖𝑝 = (∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

)

1

𝑝

 (5) 

Formula (4) is obviously the special case of (5) which corresponds to 𝑝 =  2, so the real 

and complex spaces 𝑙2
𝑛 are the 𝑛-dimensional Euclidean and unitary spaces 𝑅𝑛 and 𝐶𝑛. It is easy 

to see that (5) satisfies condi- tions (1) and (3) required by the definition of a norm. In Problem 4 

we outline a proof of the fact that (5) also satisfies condition (2), that is, that ‖𝑥 + 𝑦‖𝑝 ≤ ‖𝑥‖𝑝 +

‖𝑦‖𝑝. The completeness of 𝑙𝑝
𝑛 follows from substantially the same reasoning as that used in the 

proof of Theorem 15-A, so 𝑙𝑝
𝑛 a Banach space.  

Example 4. We again consider a real number 𝑝 with the property that1 ≤ 𝑝 < ∞, and we denote 

by 𝑙𝑝, the space of all sequences 
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𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛 , … ) 

of scalars such that ∑ |𝑥𝑛|𝑝∞
𝑛=1 < ∞, with the norm defined by  

‖𝑥‖𝑝 = (∑|𝑥𝑛|𝑝

∞

𝑛=1

)

1

𝑝

 (6) 

The reader will observe that the real and complex spaces l2 are precisely the infinite-dimensional 

Euclidean and unitary spaces 𝑅∞ and 𝐶∞ defined in Problem 15-4. The proof of the fact that 1, 

actually is a Banach space requires arguments similar to those used in Problems 15-3 and 15-4.  

The Banach spaces discussed in these examples are all special cases of the important 𝐿𝑝, 

spaces studied in the theory of measure and integration. A detailed treatment of these spaces is 

outside the scope of this book, but we can describe them loosely as follows. An 𝐿𝑝, space 

essentially consists of all measurable functions f defined on a measure space 𝑋 with measure m 

which are such that |𝑓(𝑥)|𝑝 is integrable, with  

‖𝑓‖𝑝 = (∫ |𝑓(𝑥)|𝑝𝑑𝑚(𝑥))

1

𝑝
 (7) 

taken as the norm. In order to include the spaces 𝑙𝑛
𝑝
 and 𝑙𝑝, within the theory of 𝐿𝑝, 

spaces, we have only to consider the sets {1, 2, … , 𝑛} and {1, 2, … , 𝑛, . . . } as measure spaces in 

which each point has measure 1, and to regard 𝑛-tuples and sequences of scalars as functions 

defined on these sets. Since integration is a generalized type of summation, formulas (5) and (6) 

are special cases of formula (7). 

Example 5. Just as in Example 3, we start with the linear space of all 𝑛-tuples 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛)of scalars, but this time we define the norm by  

‖𝑥‖ = max{|𝑥1|, |𝑥2|, … , |𝑥𝑛|} (8) 

This Banach space is commonly denoted by𝑙𝑚
𝑛 , and the symbol‖𝑥‖∞. is occasionally 

used for the norm given by (8). The reason for this practice lies in the interesting fact that  
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‖𝑥‖∞ = lim‖𝑥‖𝑝    𝑎𝑠  𝑝 → ∞ 

that is, that  

max{|𝑥𝑖|} = lim (∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

)

1

𝑝

   𝑎𝑠   𝑝 → ∞ (9) 

We briefly inspect the case 𝑛 =  2 to see why thisistrue. Let𝑥 = (𝑥1, 𝑥2) be an ordered 

pair of real numbers with 𝑥1 and𝑥2 ≥ 0. It is clear that‖𝑥‖∞ = max{𝑥1, 𝑥2} ≤ (𝑥1
𝑝

+ 𝑥2
𝑝)

1

𝑝 =

‖𝑥‖𝑝. If𝑥1 = 𝑥2, thenlim‖𝑥‖𝑝 = lim(2𝑥2
𝑝)

1

𝑝 = lim 2
1

𝑝𝑥2 = ‖𝑥‖∞. And if𝑥1 < 𝑥2, then 

lim‖𝑥‖𝑝 = lim(𝑥1
𝑝

+ 𝑥2
𝑝)

1

𝑝 

= lim ([(
𝑥1

𝑥2
)

𝑝

+ 1] 𝑥2
𝑝

)

1

𝑝

 

= lim [(
𝑥1

𝑥2
)

𝑝

+ 1]

1

𝑝

𝑥2 

= 𝑥2 

= ‖𝑥‖∞ 

Example 6. Consider the linear space of all bounded sequences 𝑥 = {𝑥1, 𝑥2, . . , 𝑥𝑛 , … }of scalars. 

By analogy with Example 5, we define the norm by  

‖𝑥‖ = sup|𝑥𝑛| (10) 

and we denote the resulting Banach space by 𝑙∞. The set c of all convergent sequences is 

easily seen to be a closed linear subspace of 𝑙∞. and is therefore itself a Banach space. Another 

Banach space in this family is the subset 𝑐𝑜 of 𝑐 which consists of all convergent sequences with 

limit 0.  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

10 
 

Example 7. The Banach space of primary interest to us is the space 𝒞(𝑋) of all bounded 

continuous scalar-valued functions defined on a topological space 𝑋, with the norm given by  

‖𝑓‖ = sup|𝑓(𝑥)| (11) 

This norm is sometimes called the uniform norm, because the statement that 𝑓𝑛, 

converges to 𝑓 with respect to this norm means that 𝑓𝑛, converges to 𝑓 uniformly on 𝑋. The fact 

that this space is complete amounts to the fact that if 𝑓 is the uniform limit of a sequence of 

bounded continuous functions, then 𝑓 itself is bounded and continuous. If, as above, we consider 

n-tuples and sequences as functions defined on {1, 2, … , 𝑛} and {1,2, … , 𝑛, . . . }, then the spaces 

𝑙∞
𝑛 and 𝑙∞, are the special cases of 𝒞(𝑋) which correspond to choosing 𝑋 to be the sets just 

mentioned, each with the discrete topology. 

Many important properties of a Banach space are closely linked to the shape of its closed 

unit sphere, that is, the set𝑆 = {𝑥: ‖𝑥‖ ≤ 1}. One basic property of 𝑆 is that it is always conver, 

in the sense (see Problem 32-5) that if 𝑥 and 𝑦 are any two vectors in 𝑆, then the vector 𝑧 =

𝛼𝑥 + 𝛽𝑦 is also in 𝑆, where 𝛼 and 𝛽 are non-negative real numbers such that𝛼 + 𝛽 = 1; for  

‖𝑧‖ = ‖𝛼𝑥 + 𝛽𝑦‖ 

      ≤ 𝛼‖𝑥‖ + 𝛽‖𝑦‖ 

< 𝛼 + 𝛽          

= 1                  

In this connection, it is illuminating to consider the shape of 𝑆 for certainsimple 

examples. Let our underlying linear space be the real linear  
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Fig. 1 Some Closed Unit Spheres 

space 𝑅2 of all ordered pairs 𝑥 = (𝑥1, 𝑥2) of real numbers. As we have seen, there are 

many different norms which can be defined on 𝑅2, among which are the following: 

 ‖𝑥‖1 = |𝑥1| + |𝑥2|; ‖𝑥‖2 = (|𝑥1|2 + |𝑥2|2)
1

2and ‖𝑥‖∞ = max{𝑥1, 𝑥2}.  

Figure 1 illustrates the closed unit sphere which corresponds to each of these norms. In 

the first case, 𝑆 is the square with vertices (1,0), (0,1), (−1,0), (0, −1); in the second, it is the 

circular disc of radius 1; and in the third, it is the square with vertices 

(1,1), (−1,1), (−1, −1), (1, −1). If we consider the norm defined by  

‖𝑥‖𝑝 = (|𝑥1|𝑝 + |𝑥2|𝑝)
1

𝑝 (12) 

Where1 ≤ 𝑝 < ∞, and if we allow 𝑝 to increase from 1 to ∞, then the corresponding S’s 

swell continuously from the first square mentioned to the second. We note that 𝑆 is truly 
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“spherical”⟺ 𝑝 = 2. These considerations also show quite clearly why we always assume that 

𝑝 ≥ 1; for if we were to define ‖𝑥‖𝑝, by formula (12) with 𝑝 <  1, then 𝑆 = {𝑥: ‖𝑥‖𝑝 ≤

1}would not be convex (see the star-shaped inner portion of Fig. 35). For 𝑝 <  1, therefore, 

formula (12) does not yield a norm.  

In the above examples, we have exhibited several different types of Banach spaces, and 

there are yet others which we have not mentioned. Amid this diversity of possibilities, it is well 

to realize that any Banach space can be regarded—from the point of view of its linear and norm 

structures alone—as a closed linear subspace of 𝒞(𝑋) for a suitable compact Hausdorff space X. 

We prove this below, in our discussion of the natural imbedding of a Banach space in its second 

conjugate space.  

Problems  

1. Let 𝑁 be a non-zero normed linear space, and prove that 𝑁 is a Banach space ⇔

{𝑥: ‖𝑥‖ = 1} is complete.  

2. Leta Banach space B be the direct sum of the linear subspaces 𝑀 and 𝑁,sothat𝐵 =

 𝑀⨁𝑁. If𝑧 = 𝑥 +  𝑦 is the unique expression of a vector z in B as the sum of vectors x 

and y in M and N, then a new norm can be defined on the linear space B by‖𝑧‖′ = ‖𝑥‖ +

‖𝑦‖. Prove that this actually isa norm. If 𝐵’ symbolizes the linear space B equipped with 

this new norm, prove that B’ is a Banach space if M and N are closed in B.  

3. Prove Eq. (9) for the case of an arbitrary positive integer n.  

 

1.2 : CONTINUOUS LINEAR TRANSFORMATIONS  

Let 𝑁 and 𝑁’ be normed linear spaces with the same scalars, and let 𝑇 be a linear 

transformation of 𝑁 into 𝑁’. When we say that 𝑇 is continuous, we mean that it is continuous as 

a mapping of the metric space 𝑁 into the metric space 𝑁’. By Theorem 13-B, this amounts to the 

condition that 𝑥𝑛 → 𝑥 in 𝑁 ⇒ 𝑇(𝑥𝑛) →  𝑇(𝑥) in 𝑁’. Our main purposein this section is to 

convert the requirement of continuity into several more useful equivalent forms and to show that 

the set of all continuous linear transformations of 𝑁 into 𝑁’ can itself be made inte a normed 

linear space in a natural way.  
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Theorem 1.2 : Let 𝑁 and 𝑁’ be normed linear spaces and 𝑇 a linear transformation of 𝑁 into 𝑁’. 

Then the following conditions on 𝑇 are all equivalent to one another:  

(1) 𝑇 is continuous;  

(2) 𝑇 is continuous at the origin, in the sense that 𝑥𝑛 → 0 ⇒ 𝑇(𝑥𝑛) → 0;  

(3) there exists a real number 𝐾 > 0 with the property that ‖𝑇(𝑥)‖ ≤ 𝐾‖𝑥‖ for every  

𝑥 ∈ 𝑁;  

(4) if 𝑆 = {𝑥: ‖𝑥‖ ≤ 1} ds the closed unit sphere in 𝑁, then its image 𝑇(𝑆) is a bounded 

set in 𝑁’.  

Proof.  

(1)⇔ (2). If 𝑇 is continuous, then since 𝑇(0) =  0 it is certainly continuous at the origin. 

On the other hand, if 𝑇 is continuous at the origin, then𝑥𝑛 → 𝑥 ⇔ 𝑥𝑛 − 𝑥 → 0 ⇒ 𝑇(𝑥𝑛 − 𝑥) →

0 ⇔ 𝑇(𝑥𝑛) − 𝑇(𝑥) → 0 ⇔ 𝑇(𝑥𝑛) = 𝑇(𝑥), so 𝑇 is continuous.  

(2) ⇔ (3). It is obvious that (3) ⇒ (2), for if such a 𝐾 exists, then 𝑥𝑛 → 0 clearly implies 

that𝑇(𝑥𝑛) → 0.  

To show that (2) ⇒ (3), we assume that there is no such 𝐾.  

It follows from this that for each positive integer 𝑛 we can find a vector 𝑥, such that 

‖𝑇(𝑥𝑛)‖ > 𝑛‖𝑥𝑛‖ or equivalently, such that ‖𝑇 (
𝑥𝑛

𝑛‖𝑥𝑛‖
)‖ > 1.  

If we now put  

𝑦𝑛 =
𝑥𝑛

𝑛‖𝑥𝑛‖
, 

then it is easy to see that 𝑦𝑛 → 0 but𝑇(𝑦𝑛) ↛ 0, so 𝑇 is not continuous at the origin.  

(3) ⇔ (4). Since a non-empty subset of a normed linear space is bounded ⇔ it is 

contained in a closed sphere centered on the origin, it is evident that (3) ⇒ (4); for if‖𝑥‖ ≤ 1, 
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then‖𝑇(𝑥)‖ ≤ 𝐾. To show that (4) ⇒ (3), we assume that 𝑇(𝑆) is contained in a closed sphere of 

radius 𝐾 centered on the origin.  

If 𝑥 =  0, then 𝑇(𝑥) =  0, and clearly ‖𝑇(𝑥)‖ ≤ 𝐾‖𝑥‖; and if 𝑥 ≠ 0, then
𝑥

‖𝑥‖
∈ 𝑆, and 

therefore‖𝑇 (
𝑥

‖𝑥‖
)‖ ≤ 𝐾, so again we have‖𝑇(𝑥)‖ ≤ 𝐾‖𝑥‖.  

If the linear transformation 𝑇 in this theorem satisfies condition (3), so that there exists a 

real number 𝐾 >  0 with the property that  

‖𝑇(𝑥)‖ ≤ 𝐾‖𝑥‖ 

for every 𝑥, then 𝐾 is called a bound for 𝑇, and such a 𝑇 is often referred to as a bounded 

linear transformation.  

According to our theorem, 𝑇 is bounded ⇔ it is continuous, so these two adjectives can 

be used interchangeably.  

We now assume that 𝑇 is continuous, so that it satisfies condition (4), and we define its 

norm by  

‖𝑇‖ = sup{‖𝑇(𝑥)‖: ‖𝑥‖ ≤ 1} (1) 

When 𝑁 ≠ {0}, this formula can clearly be written in the equivalent form  

‖𝑇‖ = sup{‖𝑇(𝑥)‖: ‖𝑥‖ = 1} (2) 

It is apparent from the proof of Theorem A that the set of all bounds for 𝑇 equals the set 

of all radii of closed spheres centered on the origin which contain 𝑇(𝑆). This yields yet another 

expression for the norm of 𝑇,  

namely,  

‖𝑇‖ = inf{𝐾: 𝐾 ≥ 0 𝑎𝑛𝑑 ‖𝑇(𝑥)‖ ≤ 𝐾‖𝑥‖ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥}; (3) 

and from this we see at once that  
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‖𝑇(𝑥)‖ ≤ ‖𝑇‖‖𝑥‖ (4) 

for all 𝑥.  

We now denote the set of all continuous (or bounded) linear transformations of 𝑁 into 𝑁’ 

by 𝒞(𝑁, 𝑁’), where the letter “𝒞” is intended to suggest the adjective ‘‘bounded.”’ It is a routine 

matter to verify that this set is a linear space with respect to the pointwise linear operations 

defined by Eqs. (1) and (2) and to show that formula (1) actually does define a norm on this 

linear space. We summarize and extend these remarks in  

Theorem 1.3 : If 𝑁 and 𝑁’ are normed linear spaces, then the set 𝒞(𝑁, 𝑁’) of all continuous 

linear transformations of 𝑁 into 𝑁’ is itself a normed linear space with respect to the pointwise 

linear operations and the norm defined by (1). Further, if 𝑁’ is a Banach space, then 𝒞(𝑁, 𝑁’) is 

also a Banach space.  

Proof. 

We leave to the reader the simple task of showing that 𝒞(𝑁, 𝑁’) is a normed linear space, 

and we prove that this space is complete when 𝑁’ is.  

Let {𝑇𝑛} be a Cauchy sequence in 𝒞(𝑁, 𝑁’).  

If 𝑥 is an arbitrary vector in 𝑁, then ‖𝑇𝑚(𝑥) − 𝑇𝑛(𝑥)‖ = ‖(𝑇𝑚 − 𝑇𝑛)(𝑥)‖ ≤

‖𝑇𝑚 − 𝑇𝑛‖‖𝑥‖shows that {𝑇𝑛(𝑥)} is a Cauchy sequence in 𝑁’; and since 𝑁’ is complete, there 

exists a vector in N’-- we denote it by 𝑇(𝑧)—such that 𝑇𝑛(𝑥) → 𝑇(𝑥).  

This defines a mapping 𝑇 of 𝑁 into 𝑁’, and by the joint con- tinuity of addition and scalar 

multiplication, 𝑇 is easily seen to be a linear transformation.  

To conclude the proof, we have only to show that 𝑇 is continuous and that 𝑇𝑛 → 𝑇 with 

respect to the norm on 𝒞(𝑁, 𝑁’).. By the inequality (1), the norms of the terms of a Cauchy 

sequence in a normed linear space form a bounded set of numbers, so  

‖𝑇(𝑥)‖ = ‖lim 𝑇𝑛(𝑥)‖ = lim‖𝑇𝑛(𝑥)‖ ≤ sup(‖𝑇𝑛‖‖𝑥‖) = (sup‖𝑇𝑛‖)‖𝑥‖ 
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shows that 𝑇 has a bound and is therefore continuous.  

It remains to be proved that 

‖𝑇𝑛 − 𝑇‖ → 0. Let 𝜖 >  0 be given, and let 𝑛0 be a positive integer such that 

 𝑚, 𝑛 ≥ 𝑛0 ⇒ ‖𝑇𝑚 = 𝑇𝑛‖ < 𝜖. If‖𝑥‖ ≤ 1and 𝑚, 𝑛 > 𝑛0, then  

‖𝑇𝑚(𝑥) − 𝑇𝑛(𝑥)‖ = ‖(𝑇𝑚 − 𝑇𝑛)(𝑥)‖ 

                               = ‖𝑇𝑚 − 𝑇𝑛‖‖𝑥‖ 

                        ≤ ‖𝑇𝑚 − 𝑇𝑛‖ 

< 𝜖  

We now hold m fixed and allow 𝑛 to approach∞, and we see that ‖𝑇𝑚(𝑥) − 𝑇𝑛(𝑥)‖ →

‖𝑇𝑚(𝑥) − 𝑇(𝑥)‖, from which we conclude that ‖𝑇𝑚(𝑥) − 𝑇(𝑥)‖ < 𝜖 for all 𝑚 > 𝑛0 and all 𝑥 

such that ‖𝑥‖ < 1. This shows that ‖𝑇𝑚 − 𝑇‖ ≤ 𝜖 for all 𝑚 > 𝑛0, and the proof is complete.  

Let 𝑁 be a normed linear space. We call a continuous linear transformation of 𝑁 into 

itself an operator on 𝑁, and we denote the normed linear space of all operators on 𝑁 by 𝒞(𝑁) 

instead of 𝒞(𝑁, 𝑁). 

Theorem 1.3 shows that 𝒞(𝑁) is a Banach space when 𝑁 is. Furthermore, if operators are 

multiplied in accordance with formula (3), then 𝒞(𝑁) is an algebra in which multiplication is 

related to the norm by  

‖𝑇𝑇′‖ ≤ ‖𝑇‖‖𝑇′‖ (5) 

This relation is proved by the following computation:  

‖𝑇𝑇′‖ = sup{‖(𝑇𝑇′)(𝑥)‖: ‖𝑥‖ ≤ 1} 

             = sup{‖𝑇(𝑇′(𝑥))‖: ‖𝑥‖ ≤ 1} 

            ≤ sup{‖𝑇‖‖𝑇(𝑥)‖: ‖𝑥‖ ≤ 1} 
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              = ‖𝑇‖ sup{‖𝑇′(𝑥)‖: ‖𝑥‖ ≤ 1} 

= ‖𝑇‖‖𝑇′‖ 

We know from the previous section that addition and scalar multiplication in 𝒞(𝑁) are 

jointly continuous, as they are in any normed linear space. Property (5) permits us to conclude 

that multiplication is also jointly continuous:  

𝑇𝑛 → 𝑇 𝑎𝑛𝑑 𝑇𝑛
′ → 𝑇′ ⇒ 𝑇𝑛𝑇𝑛

′ → 𝑇𝑇′ 

This follows at once from  

‖𝑇𝑛𝑇𝑛
′ − 𝑇𝑇′‖ = ‖𝑇𝑛(𝑇𝑛

′ − 𝑇′) + (𝑇𝑛 − 𝑇)𝑇′‖ 

                                   ≤ ‖𝑇𝑛‖‖𝑇𝑛
′ − 𝑇′‖ + ‖𝑇𝑛 − 𝑇‖‖𝑇′‖ 

We also remark that when 𝑁 ≠ {0}, then the identity transformation 𝐼 is an identity for 

the algebra 𝒞(𝑁). In this case, we clearly have  

‖𝐼‖ = 1 (6) 

for ‖𝐼‖ = sup{‖𝐼(𝑥)‖: ‖𝑥‖ ≤ 1} = sup{‖𝑥‖: ‖𝑥‖ ≤ 1} = 1.  

We complete this section with some definitions which will often be useful in our later 

work. Let 𝑁 and 𝑁’ be normed linear spaces. An isometric isomorphism of 𝑁 into 𝑁’ is a one-to-

one linear transformation 𝑇 of 𝑁 into 𝑁’ such that ‖𝑇(𝑥)‖ = ‖𝑥‖ for every 𝑥 in 𝑁; and 𝑁 is said 

to be zsometrically isomorphic to 𝑁’ if there exists an isometric isomorphism of 𝑁 onto 𝑁’. This 

terminology enables us to give precise meaning to the statement that one normed linear space is 

essentially the same as another.  

Problems  

1. If 𝑀 is a closed linear subspace of a normed linear space 𝑁, and if 𝑇 is the natural 

mapping of 𝑁 onto 
𝑁

𝑀
 defined by 𝑇(𝑧) =  𝑥 +  𝑀, show that 𝑇 is a continuous linear 

transformation for which ‖𝑇‖ ≤ 1. 
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2. If 𝑇 is a continuous linear transformation of a normed linear space𝑁 into a normed linear 

space 𝑁’, and if 𝑀 is its null space, show that 𝑇 induces a natural linear transformation 𝑇’ 

of 
𝑁

𝑀
 into 𝑁’ andthat ‖𝑇′‖ = ‖𝑇‖.  

3. Let 𝑁 and 𝑁’ be normed linear spaces with the same scalars. If 𝑁 is infinite-dimensional 

and 𝑁’ ≠ {0}, show that there exists a linear transformation of 𝑁 into 𝑁’ which is not 

continuous. (We shall see in Problem 7 that if 𝑁 is finite-dimensional, then every linear 

transformation of 𝑁 into 𝑁’ is automatically continuous.)  

4. Let a linear space 𝐿 be made into a normed linear space in two ways, and let the two 

norms of a vector 𝑥 be denoted by ‖𝑥‖ and ‖𝑥‖’. These norms are said to be equivalent if 

they generate the sametopology on 𝐿. Show that this is the case ⇔ there exist two 

positive real numbers 𝐾1, and 𝐾2 such that 𝐾1‖𝑥‖ ≤ ‖𝑥‖′ ≤ 𝐾2‖𝑥‖for all 𝑥. (If 𝐿 is 

finite-dimensional, then any two norms defined on it are equivalent. See Problem 7.)  

5. If 𝑛 is a fixed positive integer, the spaces 𝑙𝑝
𝑛(1 ≤  𝑝 < ∞) consist of a single underlying 

linear space with different norms defined on it. Show that these norms are all equivalent 

to one another. (Hint: show that convergence with respect to each norm amounts to 

coordinatewise convergence.)  

1.3 : THE HAHN-BANACH THEOREM  

One of the basic principles of strategy in the study of an abstract mathematical system 

can be stated as follows: consider the set of all structure-preserving mappings of that system into 

the simplest system of the same type. This principle is richly fruitful in the structure theory (or 

representation theory) of groups, rings, and algebras, and we shall see in the next section how it 

works for normed linear spaces.  

We have remarked that the spaces 𝑅 and 𝐶 are the simplest of all normed linear spaces. If 

𝑁 is an arbitrary normed linear space, the above principle leads us to form the set of all 

continuous linear trans- formations of 𝑁 into 𝐹 or 𝐶, according as 𝑁 is real or complex. This 

set— it is 𝒞(𝑁, 𝑅) or 𝒞(𝑁, 𝐶)—is denoted by 𝑁∗ and is called the conjugate space of 𝑁. The 

elements of 𝑁∗ are called continuous linear functionals, or more briefly, functionals.It follows 

from our work in the previous section that if these functionals are added and multiplied by 

scalars pointwise, and if the norm of a functional f is defined by  
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‖𝑓‖ = sup{|𝑓(𝑥)|: ‖𝑥‖ ≤ 1} 

                                                   = inf{𝐾: 𝐾 ≥ 0 𝑎𝑛𝑑 |𝑓(𝑥)| ≤ 𝐾‖𝑥‖ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥}, 

then 𝑁∗ is a Banach space.  

When we consider various specific Banach spaces, the problem arises of determining the 

concrete nature of the functionals associated with these spaces. It is not our aim in this section to 

explore the ample body of theory which centers around this problem, and in any case, the 

machinery necessary for such an enterprise (mostly the theory of measure and integration) is not 

available to us. Nevertheless, for the reader who may have the required background, we mention 

some of the main facts with- out proof.  

Let 𝑋 be a measure space with measure 𝑚, and let 𝑝 be a given real number such that 

1 <  𝑝 < ∞. Consider the Banach space 𝐿𝑝, of all measurable functions 𝑓 defined on 𝑋 for 

which |𝑓(𝑥)|𝑝 is integrable. If 𝑔 is a function in 𝐿𝑝, where 
1

𝑝
+

1

𝑞
=  1, we define a function 𝐹𝑠, 

on 𝐿𝑝, by  

𝐹𝑔(𝑓) = ∫ 𝑓(𝑥)𝑔(𝑥) 𝑑𝑚(𝑥) 

The Hélder inequality for integrals mentioned at the end of Problem 46-4 shows that  

|𝐹𝑔(𝑓)| = |∫ 𝑓(𝑥)𝑔(𝑥) 𝑑𝑚(𝑥)| 

             ≤ ∫ |𝑓(𝑥)𝑔(𝑥)𝑑𝑚(𝑥)| 

≤ ‖𝑓‖𝑔‖𝑔‖𝑞 

We conclude from this that 𝐹𝑔, is a well-defined scalar-valued linear function on L, with 

the property that‖𝐹𝑔‖ ≤ ‖𝑔‖𝑞, and is therefore a functional on 𝐿𝑝. It can be shown that equality 

holds here, so that  

‖𝐹𝑔‖ ≤ ‖𝑔‖𝑞  
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It can also be shown that every functional on 𝐿𝑝, arises in this way, so the mapping𝑔 →

𝐹𝑝, (which is clearly linear) is an isometric isomorphism of 𝐿𝑞 onto 𝐿𝑝
∗ . This statement is usually 

expressed by writing  

𝐿𝑝
∗ = 𝐿𝑞 (1) 

where the equality sign is to be interpreted in the sense just explained. If we specialize 

these considerations to n-tuples of scalars, we see that (1) becomes  

(𝑙𝑝
𝑛)

∗
= 𝑙𝑞

𝑛 (2) 

Further, it can be shown that  

(𝑙1
𝑛)∗ = 𝑙∞

𝑛  (3) 

and that  

(𝑙∞
𝑛 )∗ = 𝑙1

𝑛 (4) 

We sketch proofs of (2), (3), and (4) in the problems. When we consider sequences of 

scalars, then for 1 < 𝑝 < ∞we have the following special case of (1):  

𝑙𝑝
∗ = 𝑙𝑞 (5) 

If 𝑝 =  1, we obtain a natural extension of (3):  

𝑙1
∗ = 𝑙∞ (6) 

The corresponding extension of (4) is another matter, for it is false that𝑙∞
∗ = 𝑙1. Instead, 

we have  

𝑐0
∗ = 𝑙1 (7) 

What is 𝑙∞
∗ ? We saw in Sec. 46 that 𝑙∞ is a special case of 𝒞(𝑋), so this question leads 

naturally to the problem of determining the nature of the conjugate space 𝒞∗(𝑋).  
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The classic solution of this problem for a space 𝑋 which is compact Hausdorff (or even 

normal) is known as the Riesz representation theorem, and it depends on some of the deeper 

parts of the theory of measure and integration (see Dunford and Schwartz [8, pp. 261-265]). The 

situation is somewhat simpler for the case in which 𝑋 is an interval [𝑎, 𝑏] on the real line, but 

even here an adequate treatment requires a knowledge of Stieltjes integrals (see Riesz and Sz.-

Nagy [35, secs. 49-51)).  

Most of the theory of conjugate spaces rests on the Hahn-Banach theorem, which asserts 

that any functional defined on a linear subspace of a normed linear space can be extended 

linearly and continuously to the whole space without increasing its norm. The proof is rather 

complicated, so we begin with a lemma which serves to isolate its most difficult parts.  

Lemma. Let 𝑀 be a linear subspace of a normed linear space 𝑁, and let f be a functional defined 

on 𝑀. If 𝑥0 is a vector not in 𝑀, and if  

𝑀0  = 𝑀 + [𝑥0] 

is the linear subspace spanned by 𝑀 and 𝑥0, then 𝑓 can be extended to a functional 𝑓0 

defined on 𝑀0 such that‖𝑓0‖ = ‖𝑓‖.  

Proof. 

We first prove the lemma under the assumption that 𝑁 is a real normed linear space. We 

may assume, without loss of generality, that ‖𝑓‖ = 1.  

Since 𝑥0 is not in 𝑀, each vector 𝑦 in 𝑀0 is uniquely expressible in the form 𝑦 =  𝑥 +

𝛼𝑥0 with 𝑥in 𝑀.  

It is clear that the definition 𝑓0(𝑥 + 𝛼𝑥0) = 𝑓0(𝑥) + 𝛼𝑓0(𝑥0) = 𝑓(𝑥) + 𝛼𝑟0 extends 𝑓 

linearly to 𝑀0, for every choice of the real number 𝑟0 = 𝑓0(𝑥0).  

Since we are trying to arrange matters so that‖𝑓0‖ = 1, our problem is to show that 𝑟0can 

be chosen in such a way that |𝑓0(𝑥 + 𝛼𝑥0)| ≤ ‖𝑥 + 𝛼𝑥0‖ for every 𝑥 in 𝑀 and every 𝛼 ≠ 0. 

Since 𝑓0(𝑥 + 𝛼𝑥0) = 𝑓(𝑥) + 𝛼𝑟0, this inequality can be written as  
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−‖𝑥 + 𝛼𝑥0‖ ≤ 𝑓(𝑥) + 𝛼𝑟0 ≤ ‖𝑥 + 𝛼𝑥0‖ 

𝑜𝑟 − 𝑓(𝑥) − ‖𝑥 + 𝛼𝑥0‖ ≤ 𝛼𝑟0 ≤ −𝑓(𝑥) + ‖𝑥 + 𝛼𝑥0‖ 

which in turn is equivalent to  

−𝑓 (
𝑥

𝛼
) − ‖

𝑥

𝛼
+ 𝑥0‖ ≤ 𝑟0 ≤ −𝑓 (

𝑥

𝛼
) + ‖

𝑥

𝛼
+ 𝑥0‖ (8) 

We now observe that for any two vectors 𝑥1 and 𝑥2 in 𝑀 we have  

𝑓(𝑥2) − 𝑓(𝑥1) = 𝑓(𝑥2 − 𝑥1) 

≤ |𝑓(𝑥2 − 𝑥1)| 

   ≤ ‖𝑓‖‖𝑥2 − 𝑥1‖ 

= ‖𝑥2 − 𝑥1‖ 

                      = ‖(𝑥2 − 𝑥0) − (𝑥1 + 𝑥0)‖ 

                    = ‖𝑥2 + 𝑥0‖ + ‖𝑥1 + 𝑥0‖ 

𝑠𝑜, −𝑓(𝑥1) − ‖𝑥1 + 𝑥0‖ ≤ −𝑓(𝑥2) + ‖𝑥2 + 𝑥0‖ (9) 

If we define two real numbers 𝑎 and 𝑏 by  

𝑎 = sup  {−𝑓(𝑥) − ‖𝑥 + 𝑥0‖: 𝑥 ∈ 𝑀} 

𝑎𝑛𝑑   𝑎 = inf{−𝑓(𝑥) + ‖𝑥 + 𝑥0‖: 𝑥 ∈ 𝑀} 

then (9) shows that 𝑎 ≤ 𝑏. If we now choose 𝑟0 to be any real number such that 𝑎 ≤ 𝑟0 ≤

𝑏, then the required inequality (8) is satisfied and this part of the proof is complete.  

We next use the result of the above paragraph to prove the lemma for the case in which N 

is complex. Here 𝑓 is a complex-valued functional defined on 𝑀 for which ‖𝑓‖ = 1.  
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We begin by remarking that a complex linear space can be regarded as a real linear space 

by simply restricting the scalars to be real numbers.  

If 𝑔 and ℎ are the real and imaginary parts of 𝑓, so that 𝑓(𝑥)  =  𝑔(𝑥)  +  𝑖ℎ(𝑥) for every 

𝑥 in 𝑀, then both 𝑔 and ℎ are easily seen to be real-valued functionals on the real space 𝑀; and 

since ‖𝑓‖ = 1, we have ‖𝑔‖ ≤ 1.  

The equation  

𝑓(𝑖𝑥) = 𝑖𝑓(𝑥) 

together with 𝑓(𝑖𝑥)  =  𝑔(𝑖𝑥)  +  𝑖ℎ(𝑖𝑥) and  

𝑖𝑓(𝑥)  =  𝑖(𝑔(𝑧) +  𝑖ℎ(𝑥))  =  𝑖𝑔(𝑥) − ℎ(𝑥) 

shows that ℎ(𝑥)  =  −𝑔(𝑖𝑥), so we can write 𝑓(𝑥)  =  𝑔(𝑥) − 𝑖𝑔(𝑖𝑥). By the above 

paragraph, we can extend 𝑔 to a real-valued functional go on the real space My in such a way 

that ‖𝑔0‖ = ‖𝑔‖, and we define 𝑓0 for 𝑥 in 𝑀0 by 𝑓0(𝑥)  =  𝑔0(𝑥) —  𝑖𝑔0(𝑖𝑥).  It is easy to see 

that 𝑓0, is an extension of 𝑓 from 𝑀 to 𝑀0, that 𝑓0(𝑥 + 𝑦) = 𝑓0(𝑥) + 𝑓0(𝑦), and that 𝑓0(𝛼𝑥) =

𝛼𝑓0(𝑥) for all real 𝛼’s. The fact that the property last stated is also valid for all complex 𝛼’s is a 

direct consequence of  

𝑓0(𝑖𝑥)  =  𝑔0(𝑖𝑥) –  𝑖𝑔0(𝑖2 𝑥)  =  𝑔0 (𝑖𝑥)  +  𝑖𝑔0 (𝑥)  =  𝑖(𝑔0 (𝑥) − 𝑖𝑔0(𝑖𝑥))  =  𝑖𝑓0(𝑥),  

so 𝑓0 is linear as a complex-valued function defined on the complex space 𝑀0. All that 

remains to be proved is that‖𝑓0‖ = 1, and we dispose of this by showing that if 𝑥 is a vector in 

𝑀0, for which ‖𝑥‖ = 1, then |𝑓0(𝑥)| ≤  1. If 𝑓0(𝑥) is real, this follows from 𝑓0(𝑥) = 𝑔0(𝑥) 

and𝑔0 ≤ 1. If 𝑓0(𝑥) is complex, then we can write 𝑓0(𝑥) = 𝑟𝑒𝑖𝜃 with 𝑟 >  0, so  

|𝑓0(𝑥)| = 𝑟 = 𝑒−𝑖𝜃𝑓0(𝑥) = 𝑓0(𝑒−𝑖𝜃𝑥) 

and our conclusion now follows from ‖𝑒−𝑖𝜃𝑥‖ = ‖𝑥‖ = 1 and the fact that 𝑓0(𝑒−𝑖𝜃𝑥)is 

real.  
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Theorem 1.4 (The Hahn-Banach Theorem) : Let 𝑀 be a linear subspace of a normed linear 

space 𝑁, and let 𝑓 be a functional defined on 𝑀. Then 𝑓 can be extended to a functional 𝑓0 

defined on the whole space 𝑁 such that ‖𝑓0‖ = ‖𝑓‖. 

Proof.  

The set of all extensions of𝑓 to functionals 𝑔 with the same norm defined on subspaces 

which contain 𝑀 is clearly a partially ordered set with respect to the following relation: 𝑔1 ≤

𝑔2means that the domain of 𝑔1: is contained in the domain of 𝑔2, and 𝑔2(𝑥) = 𝑔1(𝑥)for all 𝑥 in 

the domain of 𝑔1.  

It is easy to see that the union of any chain of extensions is also an extension and is 

therefore an upper bound for the chain. Zorn’s lemma now implies that there exists a maximal 

extension fy. We complete the proof by observing that the domain of f) must be the entire space 

N, for otherwise it could be extended further by our lemma and would not be maximal.  

As we stated in the introduction to this chapter, the main force of the Hahn-Banach 

theorem lies in the guarantee it provides that any Banach space (or normed linear space) has a 

rich supply of functionals. This property is to be understood in the sense of the following two 

theorems, on which most of its applications depend.  

Theorem 1.5 : If 𝑁 is a normed linear space and 𝑥0 is a non-zero vector in 𝑁, then there exists a 

functional 𝑓0 in 𝑁 ∗ such that 𝑓0(𝑥0) = ‖𝑥0‖and  𝑓0 =  1.  

Proof. 

Let 𝑀 = {𝛼𝑥0} be the linear subspace of 𝑁 spanned by 𝑥0, and define 𝑓 on 𝑀 

by𝑓(𝛼𝑥0) = 𝛼‖𝑥0‖. It is clear that 𝑓 is a functional on 𝑀 such that 𝑓(𝑥0) = ‖𝑥0‖and ‖𝑓‖ = 1. 

By the Hahn-Banach theorem, 𝑓 can be extended to a functional 𝑓0 in 𝑁 ∗ with the required 

properties.  

Among other things, this result shows that 𝑁 ∗ separates the vectors in 𝑁, for if 𝑥 and 𝑦 

are any two distinct vectors, so that 𝑥 − 𝑦 ≠ 0, then there exists a functional 𝑓 in N* such that 

𝑓(𝑥 − 𝑦) ≠ 0 , or equivalently, 𝑓(𝑥) ≠ 𝑓(𝑦).  
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Theorem 1.6 : If 𝑀 is a closed linear subspace of a normed linear space 𝑁 and 𝑥0 is a vector not 

in 𝑀, then there exists a functional 𝑓0 in N* such that 𝑓0(𝑀)  =  0 and 𝑓0(𝑥0) ≠ 0.  

Proof.  

The natural mapping 𝑇 of 𝑁 onto 𝑁/𝑀 (see Problem 47-1) is a continuous linear 

transformation such that 𝑇(𝑀)  =  0 and  

𝑇(𝑥0) = 𝑥0 + 𝑀 ≠ 0 

By Theorem 1.5, there exists a functional 𝑓 in (𝑁/𝑀)* such that  

𝑓(𝑥0 + 𝑀) ≠ 0 

If we now define 𝑓0 by 𝑓0(𝑥)  =  𝑓(𝑇(𝑥)), then 𝑓0 is easily seen to have the desired 

properties.  

These theorems play a critical role in the ideas developed in the following sections, and 

their significance will emerge quite clearly in the proper context.  

Problems  

1. Let 𝑀 be a closed linear subspace of a normed linear space 𝑁, and let 𝑥0 be a vector not 

in 𝑀. If d is the distance from 𝑥 to 𝑀, show that there exists a functional 𝑓0 in N* such 

that𝑓0(𝑀) = 0, 𝑓0(𝑥0) = 1, and ‖𝑓0‖  =  1/𝑑.  

2. Prove that a normed linear space 𝑁 is separable if its conjugate space N* is. (Hint: let 

{𝑓𝑛} be a countable dense set in N* and {𝑥𝑛} a corresponding set in 𝑁 such that ‖𝑥𝑛‖ ≤ 1 

and|𝑓𝑛(𝑥𝑛)| ≥ ‖𝑓𝑛‖/2; let 𝑀 be the set of all linear combinations of the 𝑥𝑛’s whose 

coefficients are rational or—if 𝑁 is complex—have rational real and imaginary parts; and 

use Theorem C to show that M = N.) We remark that N* need not be separable when N 

is, for 1, is easily proved to be separable, 𝑙1
∗ = 𝑙∞ and 𝑙∞ is not separable (see Problem 

18-4).  
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1.4 : THE NATURAL IMBEDDING OF N IN N**  

Since the conjugate space N* of a normed linear space N is itself a normed linear space, 

it is possible to form the conjugate space (N*)* of N*. We denote this space by N**, and we call 

it the second conjugate space of N.  

The importance of N** rests on the fact that each vector 𝑥 in N gives rise to a functional 

𝐹𝑥, in N**. If we denote a typical element of N* by f, then F, is defined by  

𝐹𝑥(𝑓) = 𝑓(𝑥) 

In other words, we invert the usual practice by regarding the symbol 𝑓(𝑥) as specifying a 

function of f for each fixed 𝑥, and we emphasize this point of view by writing 𝑓(𝑥) in the form 

𝐹𝑥(𝑓). A simple manipulation of the definition shows that 𝐹𝑥, is linear:  

𝐹𝑥(𝛼𝑓 + 𝛽𝑔) = (𝛼𝑓 + 𝛽𝑔)(𝑥) 

                           = 𝛼𝑓(𝑥) + 𝛽𝑔(𝑥) 

                               = 𝛼𝐹𝑥(𝑓) + 𝛽𝐹𝑥(𝑔) 

If we now compute the norm of 𝐹𝑥, we see that  

‖𝐹𝑥‖ = sup{|𝐹𝑥(𝑥)|: ‖𝑓‖ ≤ 1} 

         = sup{|𝑓(𝑥): ‖𝑓‖ ≤ 1|} 

            ≤ sup{‖𝑓‖‖𝑥‖: ‖𝑓‖ ≤ 1} 

≤ ‖𝑥‖ 

that equality holds here, so for each 𝑥 in 𝑁 we have  

‖𝐹𝑥‖ = ‖𝑥‖ 

It follows from these observations that 𝑥 → 𝐹𝑥. is a norm-preserving mapping of N into 

N**.  F is called the functional on N* induced by the vector z, and we refer to functionals of this 
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kind as induced functionals. We next point out that the mapping𝑥 → 𝐹𝑥 , is linear and is therefore 

anisometric isomorphism of N into N**. To verify this, we must show that 𝐹𝑥+𝑦(𝑓) =

(𝐹𝑥 + 𝐹𝑦)(𝑓)and 𝐹𝑎𝑥(𝑓) = (𝛼𝐹𝑥)(𝑓)for every 𝑓 in N*. The first of these relations follows from  

𝐹𝑥+𝑦(𝑓) = 𝑓(𝑥 + 𝑦) 

                      = 𝑓(𝑥) + 𝑓(𝑦) 

                        = 𝐹𝑥(𝑓) + 𝐹𝑦(𝑓) 

                     = (𝐹𝑥 + 𝐹𝑦)(𝑓) 

and the second is proved similarly. The isometric isomorphism𝑥 → 𝐹𝑥, is called the 

natural imbedding of N in N**, for it allows us to regard N as part of N** without altering any of 

its structure as a normed linear space.  

We write  

𝑁 ⊆ 𝑁∗∗ 

where this set inclusion is to be understood in the sense just explained.  

A normed linear space 𝑁 is said to be reflexive if N = N** The spaces 𝑙𝑝, (and 

𝐿𝑝) for 1 < p <∞ are reflexive, for𝑙𝑝
∗ = 𝑙𝑝, and  

𝑙𝑝
∗∗ = 𝑙𝑝

∗ = 𝑙𝑝 

It follows from Problem 48-3 that the spaces 𝑙𝑝
𝑛 for 1 ≤ 𝑝 ≤ ∞ are also reflexive. Since 

N** is complete, N is necessarily complete if it is reflexive.  

If N is complete, however, it is not necessarily reflexive, as we see from 𝑐0* = 𝑙1; and 

𝑐0** = 𝑙1* =𝑙∞. If X is a compact Hausdorff space, it can be shown that 𝒞(X) is reflexive ⇔ X is 

a finite set.  
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There is an interesting criterion for reflexivity, which depends on the concept of the weak 

topology on a normed linear space N. This is defined to be the weak topology on N generated by 

the functions in N* in the sense of Sec. 19; that is, it is the weakest topology on N with respect to 

which all the functions in V* remain continuous.  

The criterion referred to is the following: if B isa Banach space, and if S = {𝑥: ‖𝑥‖ ≤ 1} 

is its closed unit sphere, then B is reflexive ⇔ S is compact in the weak topology.  

This fact is something one should know about Banach spaces, but we shall have no need 

for it ourselves, so we state it without proof.  

Far more important for our purposes is the weak* topology on N*, which is defined to be 

the weak topology on N* generated by all the induced functionals F, in N**.  

This situation is rather complicated, so we shall try to make clear just what is going on.  

First of all, N* (like N) is a normed linear space, and it therefore has a topology derived 

from its character as a metric space. This is called the strong topology.  

N** is the set of all scalar-valued linear functions defined on N* which are continuous 

with respect to its strong topology.  

The weak topology on N* (like the weak topology on N) is the weakest topology on N* 

with respect to which all the functions in N** are continuous, and clearly this is weaker than its 

strong topology.  

So far, as we have indicated, these concepts apply equally to N and N*.  

However, since N* is the conjugate space of N, the natural imbedding enables us to 

consider N as part of N**.  

We now form the weakest topology on N* with respect to which all the functions in N—

regarded as a subset of N**—remain continuous.  

This is the weak* topology, and it is evidently weaker than the weak topology. The 

weak* topology can be given a more explicit description, in which its defining subbasic open 
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sets are displayed. Consider a vector 𝑥 in N and its induced functional 𝐹𝑥, in N**. The weak* 

topology on N* is the weakest topology under which all such F,’s are continuous. If fy is an 

arbitrary element in N*, and if 𝜖> 0 is given, then theset  

𝑆(𝑥, 𝑓0, 𝜖) = {𝑓: 𝑓 ∈ 𝑁∗ 𝑎𝑛𝑑 |𝐹𝑥(𝑓) − 𝐹𝑥(𝑓0)| < 𝜖} 

                = {𝑓: 𝑓 ∈ 𝑁∗ 𝑎𝑛𝑑 |𝑓(𝑥) − 𝑓0(𝑥)| < 𝜖} 

is an open set (in fact, a neighborhood of 𝑓0) in the weak* topology.  

Furthermore, the class of all sets of this kind, for all 𝑥’s, 𝑓0’s, and 𝜖’s, is the defining 

open subbase for the weak* topology. The finite intersections of these sets constitute an open 

base for this topology, and the open sets themselves are all unions of these finite intersections.  

We remark at this point that N* is a Hausdorff space with respect to its weak* topology. 

This follows at once from the fact that if f and g are distinct functionals in N*, then there must 

exist a vector 𝑥 in N such that 𝑓(𝑥) ≠ 𝑔(𝑥); for if we put 𝜖 = |𝑓(𝑥) —  𝑔(𝑥)|/3, then 𝑆(𝑥, 𝑓, 𝜖) 

and 𝑆(𝑥, 𝑔, 𝜖) are disjoint neighborhoods of f and g in the weak* topology.  

Let us now consider the closed unit sphere S* in N*, that is, the set 𝑆∗ = {𝑓: 𝑓 ∈

𝑁∗ 𝑎𝑛𝑑 ‖𝑓‖ <  1}. 

 It is an easy consequence of Problem 2 that S* is compact in the strong topology ⇔ N is 

finite-dimensional, so the strong compactness of S* is a very stringent condition. If N is 

complete, it follows from Problem 3 and our unproved criterion for reflexivity that S* is compact 

in the weak topology ⇔ J is reflexive, so the weak compactness of S* is still a fairly substantial 

restriction.   We state these facts to emphasize that the situation is quite different with the weak* 

topology, for here S* is always compact.  

Theorem 1.7 : If N is a normed linear space, then the closed unit sphere S* in N* is a compact 

Hausdorff space in the weak* topology.  

Proof.  

We already know that S* is a Hausdorff space in this topology, so we confine our  
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attention to proving compactness. With each vector x in N we associate a compact space 𝐶𝑥, 

where 𝐶𝑥 is the closed interval [−‖𝑥‖, ‖𝑥‖] or the closed dise {𝑥: |𝑥| ≤ ‖𝑥‖}, according as N is 

real or complex.  

By Tychonoff’s theorem, the product C of all the 𝐶𝑥’s is also a compact space. For each 

x, the values f(x) of all f’s in S* lie in 𝐶𝑥.  

This enables us to imbed S* in C by regarding each f in S* as identical with the array of 

all its values at the vectors x in N.  

It is clear from the definitions of the topologies concerned that the weak* topology on S* 

equals its topology as a subspace of C’; and since C is compact, it suffices to show that S* is 

closed as a subspace of C.  

We show that if g is in 𝑆*, then g isin S*. If we consider g to be a function defined on the 

index set N, then since g is in C we have |𝑔(𝑥)| ≤ ‖𝑥‖ for every x in N. It therefore suffices to 

show that g is linear as a function defined on N.  

Let 𝜖 >  0 be given, and let x and y be any two vectorsin N. Every basic neighborhood of 

g intersects S*, so there exists an f in S* such that |𝑔(𝑥) − 𝑓(𝑥)| < 𝜖/3, |𝑔(𝑦) − 𝑓(𝑦)| < 𝜖/

3and |𝑔(𝑥 + 𝑦) − 𝑓(𝑥 + 𝑦)| < 𝜖/3. Since 𝑓is linear, 𝑓(𝑧 +  𝑦) − 𝑓(𝑥) − 𝑓(𝑦)  =  0, and we 

therefore have  

|𝑔(𝑥 + 𝑦) − 𝑔(𝑥) − 𝑔(𝑦)| = |[𝑔(𝑥 + 𝑦) − 𝑓(𝑥 + 𝑦)]| − [𝑔(𝑥) − 𝑓(𝑥)] − [𝑔(𝑦) − 𝑓(𝑦)] 

                                               ≤ |𝑔(𝑥 + 𝑦) − 𝑓(𝑥 + 𝑦)| + |𝑔(𝑥) − 𝑓(𝑥)| + |𝑔(𝑦) − 𝑓(𝑦)| 

<
𝜖

3
+

𝜖

3
+

𝜖

3
 

= 𝜖                                                         

The fact that this inequality is true for every 𝜖 >  0 now implies that 𝑔(𝑥 +  𝑦)  =

 𝑔(𝑥)  +  𝑔(𝑦). We can show in the same way that  

𝑔(𝛼𝑥)  = 𝛼𝑔(𝑥)  
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for every scalar 𝛼, so g is linear and the theorem is proved.  

We are now in a position to keep the promise made in the last paragraph of Sec. 46, for 

the following result is an obvious consequence of our preceding work,  

Theorem 1.8 : Let N be a normed linear space, and let S* be the compact Hausdorff space 

obtained by imposing the weak* topology on the closed unit sphere in N*. Then the mapping 

𝑥 → 𝐹𝑥, where 𝐹𝑥(𝑓)  =  𝑓(𝑥) for each f in S*, ts an isometric isomorphism of N into 𝒞(S*). If N 

is a Banach space, this mapping is an isometric isomorphism of N onto a closed linear subspace 

of 𝒞(S*).  

This theorem shows, in effect, that the most general Banach space is essentially a closed 

linear subspace of 𝒞(X), where X is a compact Hausdorff space.  

The purpose of representation theorems in abstract mathematics is to reveal the structures 

of complex systems in terms of simpler ones, and from this point of view, Theorem 8 is 

satisfying to a degree.  

It must be pointed out, however, that we know next to nothing about the closed linear 

subspaces of 𝒞(X), though we know a good deal about 𝒞(X) itself. Theorem 8 is therefore 

somewhat less revealing than appears at first glance. We shall see in Chaps. 13 and 14 that the 

corresponding representation theorem for Banach algebras is much more significant and useful.  

Problems  

1. Let 𝑋 be a compact Hausdorff space, and justify the assertion that 𝒞(X) is reflexive if X 

is finite.  

2. If N is a finite-dimensional normed linear space of dimension n, show that N* also has 

dimension n. Use this to prove that N is reflexive.  

3. If B is a Banach space, prove that B is reflexive ⇔ B* is reflexive.  

4. Prove that if B is a reflexive Banach space, then its closed unit sphere S is weakly 

compact.  

5. Show that a linear subspace of a normed linear space is closed ⇔ it is weakly closed.  
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UNIT - 2 

2.1 : THE OPEN MAPPING THEOREM  

In this section we have our first encounter with basic theorems which require that the 

spaces concerned be complete. The following rather technical lemma is the key to these 

theorems.  

Lemma : If B and B’ are Banach spaces, and if T is a continuous linear transformation of B onto 

B’, then the image of each open sphere centered on the origin in B contains an open sphere 

centered on the origin in B’.  

Proof. 

We denote by 𝑆𝑟 and 𝑆𝑟
′  the open spheres with radius r centered on the origin in B and B’. 

It is easy to see that  

𝑇(𝑆𝑟)  =  𝑇(𝑟𝑆1)  =  𝑟𝑇(𝑆1)), 

so it suffices to show that 𝑇(𝑆1) contains some 𝑆𝑟
′ . 

We begin by proving that 𝑇(𝑆1) contains some 𝑆𝑟
′ . Since T is onto, we see that 𝐵′ =

∪𝑛=1
∞ 𝑇(𝑆𝑛). 𝐵’ is complete, so Baire’s theorem implies that some 𝑇(𝑆𝑛0

) has an intcrior point 

yo, which may be assumed to lie in 𝑇(𝑆𝑛0
). The mapping 𝑦 → 𝑦 − 𝑦0 is a homeomorphism of B’ 

onto itself, so 𝑇(𝑆𝑛0
) − 𝑦0 has the origin as an interior point.  

Since 𝑦0 is in 𝑇(𝑆𝑛0
), we have 𝑇(𝑆𝑛0

) − 𝑦0 ⊆ 𝑇(𝑆2𝑛0
); and from this we obtain 

𝑇(𝑆𝑛1
) − 𝑦0 = 𝑇(𝑆𝑛0

) − 𝑦0 ⊆ 𝑇(𝑆2𝑛0
), Which shows that the origin is an interior point of 

𝑇(𝑆2𝑛1
) Multiplication by any non-zero scalar is a homeomorphism of B’ onto itself, so 

𝑇(𝑆2𝑛1
) = 2𝑛0𝑇(𝑆1) = 2𝑛0𝑇(𝑆1); and it follows from this that the origin is also an interior 

point of 𝑇(𝑆1), so𝑆0
′ ⊆ 𝑇(𝑆1) for some positive number 𝜖.  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

33 
 

We conclude the proof by showing that 𝑆𝜖
′ ⊆ 𝑇(𝑆3), which is clearly equivalent to 𝑆𝜖/3

′ ⊆

𝑇(𝑆1). Let y be a vector in B’ such that ‖𝑦‖ < 𝜖.  

Since y is in 𝑇(𝑆1), there exists a vector 𝑥1; in B such that ‖𝑥1‖ < 1 and ‖𝑦 − 𝑦1‖ < 𝜖/

2, where 𝑦1 = 𝑇(𝑥1).  

We next observe that 𝑆𝜖

2

′ ⊆ 𝑇 (𝑆1

2

), so there exists a vector 𝑥2 in B such that ‖𝑥2‖ <
1

2
 

and‖(𝑦 − 𝑦1) − 𝑦2‖ < 𝜖/4, where 𝑦2 = 𝑇(𝑥2).  

Continuing in this way, we obtain a sequence {𝑥𝑛} in B such that ‖𝑥𝑛‖ < 1/2𝑛−1 

and‖𝑦 − (𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛)‖ < 𝜖/2𝑛, where 𝑦𝑛 = 𝑇(𝑥𝑛). If weput  

𝑠𝑛 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 

then it follows from ‖𝑥𝑛‖ < 1/2𝑛−1 that {𝑠𝑛} isa Cauchy sequence in B for which  

‖𝑠𝑛‖ ≤ ‖𝑥1‖ + ‖𝑥2‖ + ⋯ + ‖𝑥𝑛‖ 

< 1 +
1

2
+ ⋯ + 1/2𝑛−1 

< 2                                    

B is complete, so there exists a vector 𝑥 in B such that 𝑠𝑛 → 𝑥; and ‖𝑥‖ = ‖lim 𝑠𝑛‖ =

lim‖𝑠𝑛‖ ≤ 2 < 3 shows that 𝑥 is in 𝑆3;. All that remains is to notice that the continuity of T 

yields  

𝑇(𝑥) = 𝑇(lim 𝑠𝑛) = lim 𝑇(𝑠𝑛) = lim(𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛) = 𝑦, 

from which we see that 𝑦 is in 𝑇(𝑆3).  

This makes our main theorem easy to prove.  
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Theorem 2.1 (The Open Mapping Theorem) : If B and B’ are Banach spaces, and tf T is a 

continuous linear transformation of B onto B’, then T is an open mapping.  

Proof. 

We must show that if G is an open set in B, then T(G) is also an open set in B’. If y is a 

point in T(G), it suffices to produce an open sphere centered on y and contained in T(G).  

Let x be a point in G such that T(x) = y.  

Since G is open, zis the center of an open sphere— which can be written in the form x + 

𝑆𝑟contained in G.  

Our lemma now implies that T(𝑆𝑟) contains some 𝑆𝑟
′ ,. It is clear that y + 𝑆𝑟1

′ , is an open 

sphere centered on y, and the fact that it is contained in T(@) follows at once from 𝑦 + 𝑆𝑟1
′ ⊆

𝑦 + 𝑇(𝑆𝑟) = 𝑇(𝑥) + 𝑇(𝑆𝑟) ⊆ 𝑇(𝐺) 

Most of the applications of the open mapping theorem depend more directly on the 

following special case, which we state separately for the sake of emphasis.  

Theorem 2.2 : A one-to-one continuous linear transformation of one Banach space onto another 

is a homeomorphism. In particular, if a one-to-one linear transformation T of a Banach space 

onto itself is continuous, then its inverse 𝑇−1 is automatically continuous.  

As our first application of Theorem 2.2, we give a geometric characterization of the 

projections on a Banach space. The reader will recall from Sec. 44 that a projection E on a linear 

space L is simply an idempotent 𝐸2 = 𝐸 linear transformation of L into itself. He will also recall 

that projections on L can be described geometrically as follows:  

(1) a projection E determines a pair of linear subspaces M and N such that L = M⊕N, 

where M = {𝐸(𝑥): 𝑥 ∈ 𝐿}and N = {𝑥: 𝐸(𝑥)  =  0} are the range and null space of E;  

(2) a pair of linear subspaces M and N such that L = M⊕N determines a projection E 

whose range and null space are M and N (if 𝑧 = 𝑥 + 𝑦 is the unique representation of 

a vector in Las a sum of vectors in M and N, then E is defined by E(z) = 2).  
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These facts show that the study of projections on L is equivalent to the study of pairs of 

linear subspaces which are disjoint and span L. In the theory of Banach spaces, however, more is 

required of a projection than mere linearity and idempotence.  

A projection on a Banach space B is an idempotent operator on B; that is, it is a 

projection on B in the algebraic sense which is also continuous.  

Our present task is to assess the effect of the additional requirement of continuity on the 

geometric descriptions given in (1) and (2) above. The analogue of (1) is easy.  

Theorem 2.3. If P is a projection on a Banach space B, and if M and N are its range and null 

space, then M and N are closed linear subspaces of B such that B = M @ N.  

Proof. 

P is an algebraic projection, so (1) gives everything except the fact that M and N are 

closed.  

The null space of any continuous linear transformation is closed, so N is obviously 

closed; and the fact that 1 is also closed is a consequence of  

𝑀 = {𝑃(𝑥): 𝑥 ∈ 𝐵} 

     = {𝑥: 𝑃(𝑥) = 𝑥} 

                = {𝑥: (𝐼 − 𝑃)(𝑥) = 0} 

which exhibits M as the null space of the operator 𝐼 − 𝑃.  

The analogue of (2) is more difficult, for Theorem B is needed in itsproof.  

Theorem 2.4 : Let B be a Banach space, and let M and N be closed linear subspaces of B such 

that B= M⊕N. If 𝑧 = 𝑥 + 𝑦 is the unique representation of a vector in B as a sum of vectors in 

M and N, then the mapping P defined by P(z) = x is a projection on B whose range and null 

space are M and N.  
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Proof.  

Everything stated is clear from (2) except the fact that P is continuous, and this we prove 

as follows. By Problem 46-2, if B’ denotes the linear space B equipped with the norm defined by  

‖𝑧‖′ = ‖𝑥‖ + ‖𝑦‖ 

then 𝐵’ is a Banach space; and since‖𝑃(𝑧)‖ = ‖𝑥‖ ≤ ‖𝑥‖ + ‖𝑦‖ = ‖𝑧‖′, P is clearly 

continuous as a mapping of B’ into B.  

It therefore suffices to prove that B’ and B have the same topology. If 7 denotes the 

identity mapping of B’ onto B, then  

‖𝑇(𝑧)‖ = ‖𝑧‖ 

= ‖𝑥 + 𝑦‖ 

     ≤ ‖𝑥‖ + ‖𝑦‖ 

= ‖𝑧‖′ 

shows that T is continuous as a one-to-one linear transformation of B’ onto B. Theorem B 

now implies that T is a homeomorphism, and the proof is complete.  

This theorem raises some interesting and significant questions. Let M be a closed linear 

subspace of a Banach space B.  

As we remarked at the end of Sec. 44, there is always at least one algebraic projection 

defined on B whose range is M, and there may be a great many.  

However, it might well happen that none of these are continuous, and that conse- quently 

none are projections in our present sense. In the light of our theorems, this is equivalent to saying 

that there might not exist any closed linear subspace N such that B = M⨁N.  

What sorts of Banach spaces have the property that this awkward situation cannot occur? 

We shall see in the next chapter that a Hilbert space which is a special type of Banach space has 
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this property. We shall also see that this property is closely linked to the satisfying geometric 

structure which sets Hilbert spaces apart from general Banach spaces.  

We now turn to the closed graph theorem. Let B and B’ be Banach spaces. If we define a 

metric on the product B×B’ by  

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = max{‖𝑥1 − 𝑥2‖, ‖𝑦1 − 𝑦2‖}, 

then the resulting topology is easily seen to be the same as the product topology, and 

convergence with respect to this metric is equivalent to coordinatewise convergence. Now let T 

be a linear transformation of B into B’. We recall that the graph of T is that subset of B×B’ 

which consists of all ordered pairs of the form (x,T(x)). Problem 26-6 shows that if 7 is 

continuous, then its graph is closed as a subset of B×B’. In the present context, the converse is 

also true.  

Theorem 2.5 (The Closed Graph Theorem).If B and B’ are Banach spaces, and if T is a linear 

transformation of B into B’, then T is continuous > its graph is closed.  

Proof.  

In view of the above remarks, we may confine our attention to proving that T is 

continuous if its graph is closed. We denote by B the linear space B renormed by‖𝑥‖1 = ‖𝑥‖ +

‖𝑇(𝑥)‖. Since  

‖𝑇(𝑥)‖ ≤ ‖𝑥‖ + ‖𝑇(𝑥)‖ = ‖𝑥‖1 

T is continuous as a mapping of 𝐵1 into 𝐵’. It therefore suffices to show that 𝐵 and 𝐵1 

have the same topology.  

The identity mapping of 𝐵1 onto 𝐵 is clearly continuous, for‖𝑥‖ ≤ ‖𝑥‖ + ‖𝑇(𝑥)‖ =

‖𝑥‖. If we can show that 𝐵1 is complete, then Theorem 2.2 will guarantee that this mapping is a 

homeomorphism, and this will conclude the proof.  

Let {𝑥𝑛} be a Cauchy sequence in 𝐵1. It follows that {𝑥𝑛} and {𝑇(𝑥𝑛)} are also Cauchy 

sequences in 𝐵 and 𝐵’; and since both of these spaces are complete, there exist vectors 𝑥 and 𝑦 in 
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𝐵 and 𝐵’ such that ‖𝑥𝑛 − 𝑥‖ → 0 and ‖𝑇(𝑥𝑛) − 𝑦‖ → 0. Our assumption that the graph of 𝑇 is 

closed in 𝐵 × 𝐵’ implies that (𝑥, 𝑦) lies on this graph, so 𝑇(𝑥)  =  𝑦. The completeness of 𝐵1 

now follows from  

‖𝑥𝑛 − 𝑥‖1 = ‖𝑥𝑛 − 𝑥‖ + ‖𝑇(𝑥𝑛 − 𝑥)‖ 

                           = ‖𝑥𝑛 − 𝑥‖ + ‖𝑇(𝑥𝑛) − 𝑇(𝑥)‖ 

                             = ‖𝑥𝑛 − 𝑥‖ + ‖𝑇(𝑥𝑛) − 𝑦‖ → 0 

The closed graph theorem has a number of interesting applications to problems in 

analysis, but since our concern here is mainly with matters of algebra and topology, we do not 

pause to illustrate its uses in this direction.  

Problems  

1. Let a Banach space B be made into a Banach space B’ by means of a new norm, and 

show that the topologies generated by these norms are the same if either is stronger than 

the other.  

2. In the text, we used Theorem B to prove the closed graph theorem. Show that Theorem B 

is a consequence of the closed graph theorem.  

3. Let T be a linear transformation of a Banach space B into a Banach space B’. If {𝑓𝑖 } is a 

set of functionals in B’* which separates the vectors in B’, and if 𝑓𝑖T is continuous for 

each 𝑓𝑖, prove that Tis continuous.  

2.2 : THE CONJUGATE OF AN OPERATOR  

We shall see in this section that each operator T on a normed linear space N induces a 

corresponding operator, denoted by 7* and called the conjugate of TJ', on the conjugate space 

N*. Our first task is to define T*, and our second is to investigate the properties of the mapping 

T→T*. We base our discussion on the following theorem.  

Theorem 2.6 (The Uniform Boundedness Theorem) : Let 𝐵 be a Banach space and 𝑁 a 

normed linear space. If {𝑇𝑖} is a non-empty set of continuous linear transformations of 𝐵 into 𝑁 
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with the property that {𝑇𝑖(𝑥)} is a bounded subset of 𝑁 for each vector 𝑥 in 𝐵, then {‖𝑇𝑖‖} ts a 

bounded set of numbers; that is, {𝑇𝑖} is bounded as a subset of 𝒞(𝐵, 𝑁).  

Proof. 

For each positive integer 𝑛, the set  

𝐹𝑛 = {𝑥: 𝑥 ∈ 𝐵 𝑎𝑛𝑑 ‖𝑇𝑖(𝑥)‖ ≤ 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖} 

is clearly a closed subset of B, and by our assumption we have 

𝐵 =∪𝑛=1
∞ 𝐹𝑛 

Since B is complete, Baire’s theorem shows that one of the 𝐹𝑛’s, say 𝐹𝑛0
, has non-empty 

interior, and thus contains a closed sphere So with center 𝑥0 and radius 𝑟0 >  0.  

This says, in effect, that each vector in every set 𝑇𝑖(𝑆0) has norm less than or equal to 𝑛0; 

and for the sake of brevity, we express this fact. by writing‖𝑇𝑖(𝑆0)‖ ≤ 𝑛0.  

It is clear that 𝑆0 − 𝑥0is the closed sphere with radius 𝑟0 centered on the origin, so (𝑆0 −

𝑥0)/𝑟0 is the closed unit sphere 𝑆.  

Since 𝑥0 is in 𝑆0, it is evident that ‖𝑇𝑖(𝑆0 − 𝑥0)‖ ≤ 2𝑛0. This yields‖𝑇𝑖(𝑆)‖ ≤ 2𝑛0/𝑟0, 

so ‖𝑇𝑖‖ ≤ 2𝑛0/𝑟0 for every 𝑖, and the proof is complete.  

This theorem is often called the Banach-Steinhaus theorem, and it has several significant 

applications to analysis. See, for example, Zygmund [46, vol. 1, pp. 165-168] or G4l [11]. For 

the purposes we have in view, our main interest is in the following simple consequence of it.  

Theorem 2.7 : A non-empty subset 𝑋 of a normed linear space 𝑁 is bounded ⇔ 𝑓(𝑋) ts a 

bounded set of numbers for each 𝑓 in 𝑁 ∗.  

Proof.  

Since |𝑓(𝑥)| ≤ ‖𝑓‖‖𝑥‖, it is obvious that if 𝑋 is bounded, then 𝑓(𝑋) is also bounded for 

each 𝑓.  
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In order to prove the other half of the theorem, it is convenient to exhibit the vectors in 𝑋 

by writing 𝑋 =  {𝑥𝑖}. We now use the natural imbedding to pass from 𝑋 to the corresponding 

subset {𝐹𝑠𝑖
} of N**.  

Our assumption that 𝑓(𝑋)  =  {𝑓(𝑥𝑖)} is bounded for each 𝑓 is clearly equivalent to the 

assumption that {𝐹𝑠𝑖(𝑓)} is bounded for each 𝑓, and since N* is complete, Theorem 2.1 shows 

that {𝐹𝑠𝑖
} is a bounded subset of N**. We know that the natural imbedding preserves norms, so X 

is evidently a bounded subset of N.  

We now turn to the problem of defining the conjugate of an operator on a normed linear 

space N.  

Let L be the linear space of all scalar-valued linear functions defined on N.  

The conjugate space N* is clearly a linear subspace of L.  

Let T be a linear transformation of N into itself which is not necessarily continuous. We 

use T to define a linear transformation T”’ of L into itself, as follows.  

If 𝑓 is in L, then 𝑇’(𝑓) is defined by  

[𝑇′(𝑓)](𝑥) = 𝑓(𝑇(𝑥)) (1) 

We leave it to the reader to verify that 𝑇’(𝑓) actually is linear as a function defined on 𝑁, 

and also that 𝑇′ is linear as a mapping of 𝐿 into itself.  

The following natural question now presents itself. Under what circumstances does 𝑇’ 

map N* into N*? This question has a simple and elegant answer: 𝑇’(N*) ⊆N* ⇔ T is 

continuous. If we keep Theorem B in mind, the proof of this statement is very easy; for if S is the 

closed unit sphere in N, then T is continuous ⇔ T(S) is bounded ⇔ f(T(S)) is bounded for each f 

in N* ⇔ [𝑇’(𝑓)](S) is bounded for each fin N* ⇔ T’(f) is in N* for each f in N*.  

We now assume that the linear transformation T is continuous and is therefore an 

operator on N. The preceding developments allow us to consider the restriction of 𝑇’ to a 
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mapping of N* into itself. We denote this restriction by T*, and we call it the conjugate of T. The 

action of T* is given by  

[𝑇∗(𝑓)](𝑥) = 𝑓(𝑇(𝑥)) (2) 

in which—in contrast to (1)—𝑓 is understood to be a functional on N, and not merely a 

scalar-valued linear function. T* is clearly linear, and the following computation shows that it is 

continuous:  

‖𝑇∗‖ = sup{‖𝑇∗(𝑓)‖: ‖𝑓‖ ≤ 1} 

                                  = sup{‖𝑇∗(𝑓)(𝑥)‖: ‖𝑓‖ 𝑎𝑛𝑑 ‖𝑥‖ ≤ 1} 

                              = sup{|𝑓(𝑇(𝑥))|: ‖𝑓‖ 𝑎𝑛𝑑 ‖𝑥‖ ≤ 1} 

                                  ≤ sup{‖𝑓‖‖𝑇‖‖𝑥‖: ‖𝑓‖ 𝑎𝑛𝑑 ‖𝑥‖ ≤ 1} 

≤ ‖𝑇‖ 

Since‖𝑇‖ = sup{‖𝑇(𝑥)‖: ‖𝑥‖ ≤ 1}, we see at once from Theorem 48-B that equality 

holds here, that is, that  

‖𝑇∗‖ = ‖𝑇‖ (3) 

The mapping T → T* is thus a norm-preserving mapping of 𝒞(N) into 𝒞(N*).  

We continue in this vein by observing that the mapping T→T* also has the following 

pleasant algebraic properties:  

(𝛼𝑇1 + 𝛽𝑇2)∗ = 𝛼𝑇1
∗ + 𝛽𝑇2

∗ (4) 

(𝑇1𝑇2)∗ = 𝑇2
∗𝑇1

∗ (5) 

𝐼∗ = 𝐼 (6) 
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The proofs of these facts are easy consequences of the definitions. We illustrate the 

principles involved by proving (5). It must be shown that  

(𝑇1𝑇2)∗(𝑓) = (𝑇2
∗𝑇1

∗)(𝑓) for each 𝑓 in N*, and this means that  

[(𝑇1𝑇2)∗(𝑓)](𝑥) = [(𝑇2
∗𝑇1

∗)(𝑓)](𝑥) 

for each 𝑓in N* and each 𝑥in N. A simple computation now shows that  

[(𝑇1𝑇2)∗(𝑓)](𝑥) = 𝑓((𝑇1𝑇2)(𝑥)) 

                              = 𝑓 (𝑇1(𝑇2(𝑥))) 

                                = [𝑇1
∗(𝑓)](𝑇2(𝑥)) 

                                = [(𝑇2
∗𝑇1

∗)(𝑓)](𝑥) 

It may be helpful to the reader to have the following summary of the results of this 

discussion.  

Theorem 2.8 : If T is an operator on a normed linear space N, then its conjugate T* defined by 

Eq. (2) is an operator on N*, and the mapping T → T* is an isometric isomorphism of 𝒞(N) into 

𝒞(N*) which reverses products and preserves the identity transformation.  

The general significance of the ideas developed here can be under- stood only in the light 

of the theory of operators on Hilbert spaces. Some preliminary comments on these matters are 

given in the introduction to the next chapter.  

Problems  

1. Let B be a Banach space and N a normed linear space. If {𝑇𝑛} isa sequence in 𝒞(B,N) 

such that T(x) = lim 𝑇𝑛(𝑥) exists for each x in B, prove that T is a continuous linear 

transformation.  

2. Let T be an operator on a normed linear space N. If N is considered to be part of N** by 

means of the natural imbedding, show that T** is an extension of 7. Observe that if N is 

reflexive, then T** = T.  
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3. Let 𝑇 be an operator on a Banach space B. Show that 7 has an inverse 𝑇−1 ⇔ T* has an 

inverse (𝑇∗)−1, and that in this case (𝑇∗)−1 = (𝑇−1)∗.  

2.3 : THE DEFINITION AND SOME SIMPLE PROPERTIES  

The Banach spaces studied in the previous chapter are little more than linear spaces 

provided with a reasonable notion of the length of a vector. The main geometric concept missing 

in an abstract space of this type is that of the angle between two vectors. The theory of Hilbert 

spaces does not hinge on angles in general, but rather on some means of telling when two vectors 

are orthogonal.  

In order to see how to introduce this concept, we begin by considering the three-

dimensional Euclidean space 𝑅3.  

A vector in 𝑅3 is of course an ordered triple 𝑥 = (𝑥1, 𝑥2, 𝑥3) of real numbers, and its 

norm is defined by  

‖𝑥‖ = (|𝑥1|2 + |𝑥2|2 + |𝑥3|2)
1

2 

In elementary vector algebra, the inner product of z and another vector 𝑦 = (𝑦1, 𝑦2, 𝑦3) is 

defined by  

(𝑥, 𝑦) = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 

and this inner product is related to the norm by  

(𝑥, 𝑥) = ‖𝑥‖2 

We assume that the reader is familiar with the equation  

(𝑥, 𝑦) = ‖𝑥‖‖𝑦‖ cos 𝜃 

where 𝜃 is the angle between 𝑥 and 𝑦, and also with the fact that 𝑥 and 𝑦 are orthogonal 

precisely when (𝑥, 𝑦)  =  0.  
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Most of these ideas can readily be adapted to the three-dimensional unitary space 𝐶3. For 

any two vectors𝑥 = (𝑥1, 𝑥2, 𝑥3) and𝑦 = (𝑦1, 𝑦2, 𝑦3) in this space, we define their inner product 

by  

(𝑥, 𝑦) = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 (1) 

Complex conjugates are introduced here to guarantee that the relation  

(𝑥, 𝑥) = ‖𝑥‖2 

remains true. It is clear that the inner product defined by (1) is linear as a function of 𝑥 

for each fixed 𝑦, and is also conjugate-symmetric, in the sense that (𝑥, 𝑦) = (𝑦, 𝑥).  

In this case, it is no longer possible to think of (𝑥, 𝑦) as representing the product of the 

norms of 𝑥 and 𝑦 and the cosine of the angle between them, for (𝑥, 𝑦) is in general a complex 

number. Nevertheless, if the condition (𝑥, 𝑦)  =  0 is taken as the definition of orthogonality, 

then this concept is just as useful here as it is in the real case.  

With these ideas as a background, we are now in a position to give our basic definition. A 

Hilbert space is a complex Banach space whose norm arises from an inner product, that is, in 

which there is defined a complex function (𝑥, 𝑦) of vectors 𝑥 and 𝑦 with the following 

properties:  

1. (𝛼𝑥 + 𝛽𝑦, 𝑧) = 𝛼(𝑥, 𝑧) + 𝛽(𝑦, 𝑧) 

2. (𝑥, 𝑦) = (𝑦, 𝑥) 

3. (𝑥, 𝑥) = ‖𝑥‖2 

It is evident that the further relation  

(𝑥, 𝛼𝑦 + 𝛽𝑧) = 𝛼(𝑥, 𝑦) + 𝛽(𝑥, 𝑧) 

is a direct consequence of properties (1) and (2). 

The reader may wonder why we restrict our attention to complex spaces. Why not 

consider real spaces as well? As a matter of fact, we could easily do so, and many writers adopt 
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this approach. There are a few places in this chapter where complex scalars are necessary, but the 

theorems involved are not crucial, and we could get along with real scalars without too much 

difficulty. It is only in the complex case, however, that the theory of operators on a Hilbert space 

assumes a really satisfactory form. This will appear with particular clarity in the next chapter, 

where we make essential use of the fact that every polynomial equation of the nth degree with 

complex coefficients has exactly n complex roots (some of which, of course, may be repeated). 

For this and other reasons, we limit ourselves to the complex case throughout the rest of this 

book.  

The following are the main examples of Hilbert spaces. In accord- ance with the above 

remarks, the scalars in each example are understood to be the complex numbers.  

Example 1. The space 𝑙2
𝑛, with the inner product of two vectors . 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) 𝑎𝑛𝑑 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) 

defined by  

(𝑥, 𝑦) = ∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

 

It is obvious that conditions (1) to (3) are satisfied.  

Example 2. The space 𝑙2, with the inner product of the vectors  

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛 , … ) 𝑎𝑛𝑑 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛 , … ) 

defined by  

(𝑥, 𝑦) = ∑ 𝑥𝑖𝑦𝑖

∞

𝑖=1

 

The fact that this series converges—and thus defines a complex number— for each x and 

y in 𝑙2 is an easy consequence of Cauchy’s inequality.  
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Example 3. The space 𝐿2 associated with a measure space 𝑋 with measure 𝑚, with the inner 

product of two functions 𝑓 and 𝑔 defined by  

(𝑓, 𝑔) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑚(𝑥) 

 

This Hilbert space is of course not part of the official content of this book, but we 

mention it anyway in case the reader has some knowledge of these matters.  

As our first theorem, we prove a fundamental relation known as the Schwarz inequality.  

Theorem 2.9 : If 𝑥 and 𝑦 are any two vectors in a Hilbert space, then |(𝑥, 𝑦)| ≤ ‖𝑥‖‖𝑦‖. 

Proof.  

 

Fig. 2.Schwar’s Inequality 

When 𝑦 =  0, the result is clear, for both sides vanish. When 𝑦 ≠ 0, the inequality is 

equivalent to |(𝑥, 𝑦/‖𝑦‖)| ≤ ‖𝑥‖. We may therefore confine our attention to proving that if 

‖𝑦‖ = 1, then we have |(𝑥, 𝑦)| ≤ ‖𝑥‖ for all 𝑥. This is a direct consequence of the fact that  
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0 ≤ ‖𝑥 − (𝑥, 𝑦)𝑦‖2 

= (𝑥 − (𝑥, 𝑦)𝑦, 𝑥 − (𝑥, 𝑦)𝑦) 

= (𝑥, 𝑥) − (𝑥, 𝑦)(𝑥, 𝑦) − (𝑥, 𝑦)(𝑥, 𝑦) + (𝑥, 𝑦)(𝑥, 𝑦)(𝑦, 𝑦) 

= (𝑥, 𝑥) − (𝑥, 𝑦)(𝑥, 𝑦) 

= ‖𝑥‖2 

= |(𝑥, 𝑦)|2 

An inspection of Fig. 36 will reveal the geometric motivation for this computation.  

It follows easily from Schwarz’s inequality that the inner product in a Hilbert space is 

jointly continuous:  

𝑥𝑛 → 𝑥 𝑎𝑛𝑑 𝑦𝑛 → 𝑦 ⇒ (𝑥𝑛 , 𝑦𝑛) → (𝑥, 𝑦) 

To prove this, it suffices to observe that  

|(𝑥𝑛 , 𝑦𝑛) − (𝑥, 𝑦)| = |(𝑥𝑛 , 𝑦𝑛) − (𝑥𝑛, 𝑦) + (𝑥𝑛 , 𝑦) − (𝑥, 𝑦)| 

                                     ≤ |(𝑥𝑛 , 𝑦𝑛) − (𝑥𝑛 , 𝑦)| + |(𝑥𝑛 , 𝑦) − (𝑥, 𝑦)| 

               = |(𝑥𝑛 , 𝑦𝑛 − 𝑦)| − |(𝑥𝑛, 𝑥, 𝑦)| 

                     ≤ ‖𝑥𝑛‖‖𝑦𝑛 − 𝑦‖ + ‖𝑥𝑛 − 𝑥‖‖𝑦‖ 

A well-known theorem of elementary geometry states that the sum of the squares of the 

sides of a parallelogram equals the sum of the squares of its diagonals. This fact has an analogue 

in the present context, for in any Hilbert space the so-called parallelogram law holds:  

‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2 

This is readily proved by writing out the expression on the left in terms of inner products:  
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‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = (𝑥 + 𝑦, 𝑥 − 𝑦) + (𝑥 − 𝑦, 𝑥 − 𝑦) 

                                                 = (𝑥, 𝑥) + (𝑥, 𝑦) + (𝑦, 𝑥) + (𝑦, 𝑦) + (𝑥, 𝑥) − (𝑥, 𝑦) − (𝑦, 𝑥) + (𝑦, 𝑦) 

= 2(𝑥, 𝑥) + 2(𝑦, 𝑦) 

= 2‖𝑥‖2 + 2‖𝑦‖2 

The parallelogram law has the following important consequence for our work in the next 

section.  

Theorem 2.10 : A closed convex subset 𝐶 of a Hilbert space 𝐻 contains a unique vector of 

smallest norm.  

Proof. 

We recall from the definition in Problem 32-5 that since 𝐶 is convex, it is non-empty and 

contains (𝑥 +  𝑦)/2 whenever it contains 𝑥 and 𝑦.  

Let 𝑑 =  𝑖𝑛𝑓 {‖𝑥‖: 𝑥 ∈ 𝐶}. There clearly exists a sequence {𝑥𝑛} of vectors in 𝐶 such that 

‖𝑥𝑛‖ → 𝑑.  

By the convexity of 𝐶, (𝑥𝑚 + 𝑥𝑛)/2 is in 𝐶 and ‖(𝑥𝑚 + 𝑥𝑛)/2‖ ≥ 𝑑, so ‖(𝑥𝑚 + 𝑥𝑛)‖ ≥

2𝑑. Using the parallelogram law, we obtain  

‖𝑥𝑚 + 𝑥𝑛‖2 = 2‖𝑥𝑚‖2 + 2‖𝑥𝑛‖2 − ‖𝑥𝑚 + 𝑥𝑛‖2 

        ≤ 2‖𝑥𝑚‖2 + 2‖𝑥𝑛‖2 − 4𝑑2 

and since 2‖𝑥𝑚‖2 + 2‖𝑥𝑛‖2 − 4𝑑2 → 2𝑑2 + 2𝑑2 − 4𝑑2 = 0, it follows that {𝑥𝑛} is a 

Cauchy sequence in 𝐶.  

Since 𝐻 is complete and 𝐶 is closed, 𝐶 is complete, and there exists a vector 𝑥 in 𝐶 such 

that 𝑥𝑛 → 𝑥. It is clear by the fact that ‖𝑥‖ = ‖lim 𝑥𝑛‖ = lim‖𝑥𝑛‖ = 𝑑 that 𝑥 is a vector in 𝐶 

with smallest norm.  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

49 
 

To see that 𝑥 is unique, suppose that 𝑥’ is a vector in 𝐶 other than 𝑥 which also has norm 

𝑑. Then (𝑥 + 𝑥′)/2 is also in 𝐶, and another application of the parallelogram law yields  

‖
𝑥 + 𝑥′

2
‖ =

‖𝑥‖2

2
+

‖𝑥′‖2

2
− ‖

𝑥 − 𝑥′

2
‖

2

 

<
‖𝑥‖2

2
+

‖𝑥′‖2

2
 

= 𝑑2 

which contradicts the definition of 𝑑.  

The parallelogram law has another interesting application, which depends on the fact that 

in any Hilbert space the inner product is related to the norm by the following identity:  

4(𝑥, 𝑦) = ‖𝑥 + 𝑦‖2 − ‖𝑥 − 𝑦‖2 + 𝑖‖𝑥 + 𝑖𝑦‖2 − 𝑖‖𝑥 − 𝑖𝑦‖2 (2) 

This is easily verified by converting the expression on the right into inner products.  

Theorem 2.11 : If 𝐵is a complex Banach space whose norm obeys the parallelogram law, and if 

an inner product is defined on 𝐵 by (2), then 𝐵 is a Hilbert space.  

Proof. 

All that is necessary is to make sure that the inner product defined by (2) has the three 

properties required by the definition of a Hilbert space.  

This is easy in the case of properties (2) and (3). Property (1) is best treated by splitting it 

into two parts:  

(𝑥 + 𝑦, 𝑧) = (𝑥, 𝑧) + (𝑦, 𝑧) 

and (𝛼𝑥, 𝑦)  = 𝛼(𝑥, 𝑦). The first requires the parallelogram law, and the second follows 

from the first. We ask the reader (in Problem 6) to work out the details.  
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This result has no implications at all for our future work. However, it does provide a 

satisfying geometric insight into the place Hilbert spaces occupy among all complex Banach 

spaces: they are precisely those in which the parallelogram law is true.  

Problems  

1. Show that the series which defines the inner product in Example 2 is convergent. 

2. The Hilbert cube is the subset of 𝑙2, consisting of all sequences  

𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛 , … } 

such that |𝑥𝑛| ≤ 1/𝑛 for all 𝑛. Show that this set is compact as a subspace of 𝑙2 

3. For the special Hilbert space 𝑙2
𝑛, use Cauchy’s inequality to prove Schwarz’s inequality. 

4. Show that the parallelogram law is not true in 𝑙2
𝑛 (𝑛 >  1).  

5. In a Hilbert space, show that if‖𝑥‖ = ‖𝑦‖ = 1, and if 𝜖 > 0 is given, then there exists 

𝛿 >  0 such that ‖(𝑥 + 𝑦)/2‖ > 1 − 𝛿 ⇒ ‖𝑥 − 𝑦‖ < 𝜖. A Banach space with this 

property is said to be uniformly convex. See Taylor (41, p. 231].  

6. Give a detailed proof of Theorem C.  

2.4 : ORTHOGONAL COMPLEMENTS  

Two vectors 𝑥 and 𝑦 in a Hilbert space 𝐻 are said to be orthogonal (written 𝑥 ⊥ 𝑦) if 

(𝑥, 𝑦)  =  0. Thesymbol ⊥ is often pronounced “perp.” Since (𝑥, 𝑦) = (𝑦, 𝑥), wehave𝑥 ⊥ 𝑦 ⇔

𝑦 ⊥ 𝑥. Itis also clear that 𝑥 ⊥ 0 for every 𝑥, and (𝑥, 𝑥) = ‖𝑥‖2 shows that 0 is the only vector 

orthogonal to itself. One of the simplest geometric facts about orthogonal vectors is the 

Pythagorean theorem:  

𝑥 ⊥ 𝑦 ⇒ ‖𝑥 + 𝑦‖2 = ‖𝑥 − 𝑦‖2 = ‖𝑥‖2 + ‖𝑦‖2 

A vector 𝑥 is said to be orthogonal to a non-empty set 𝑆 (written 𝑥 ⊥S) if 𝑥 ⊥  𝑦 for 

every 𝑦 in 𝑆, and the orthogonal complement of S—denoted by 𝑆⊥—is the set of all vectors 

orthogonal to S. The following state- ments are easy consequences of the definition:  

{0}⊥ = 𝐻; 𝐻⊥ = {0} 

𝑆 ∩ 𝑆⊥ ⊆ {0} 
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𝑆1 ⊆ 𝑆2 ⇒ 𝑆1
⊥ ⊇ 𝑆2

⊥ 

𝑆⊥ is a closed linear subspace of 𝐻. 

It is customary to write (𝑆⊥)⊥ in the form 𝑆⊥⊥. Clearly, 𝑆 ⊆ 𝑆⊥⊥ 

Let 𝑀 be a closed linear subspace of 𝐻. We know that 𝑀⊥ is also a closed linear 

subspace, and that M and M+ are disjoint in the sense that they have only the zero vector in 

common. Our aim in this section is to prove that 𝐻 =  𝑀 ⊕ 𝑀⊥, and each of our theorems is a 

step in this direction.  

Theorem 2.12 : Let 𝑀 be a closed linear subspace of a Hilbert space 𝐻, let 𝑥 be a vector not in 

M, and let 𝑑 be the distance from 𝑥 to 𝑀. Then there exists a unique vector 𝑦0 in 𝑀 such that 

‖𝑥 − 𝑦0‖ = 𝑑.  

Proof. 

The set 𝐶 =  𝑥 +  𝑀 isa closed convex set, and 𝑑 is the distance from the origin to 𝐶 

(see Fig. 2).  

By Theorem, there exists a unique vector 𝑧0 in 𝐶 such that ‖𝑧0‖ = 𝑑. The vector 𝑦0 =

𝑥 − 𝑧0is easily seen to be in 𝑀, and ‖𝑥 − 𝑦0‖ = ‖𝑧0‖ = 𝑑.  

The uniqueness of 𝑦0 follows from the fact that if 𝑦1 is a vector in 𝑀 such that𝑦1 ≠ 𝑦0 

and ‖𝑥 − 𝑦1‖ = 𝑑, then 𝑧1 = 𝑥 − 𝑦1 is a vector in 𝐶 such that 𝑧1 ≠ 𝑧0 and ‖𝑧1‖ = 𝑑, which 

contradicts the uniqueness of 𝑧0.  

We use this result to prove  

Theorem 2.13 : If 𝑀 is a proper closed linear subspace of a Hilbert space 𝐻, then there exists a 

non-zero vector 𝑧0 in 𝐻 such that 𝑧0 ⊥ 𝑀.  
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Proof. 

Let 𝑥 be a vector not in 𝑀, and let 𝑑 be the distance from 𝑥 to 𝑀. By Theorem, there 

exists a vector 𝑦0 in 𝑀 such that ‖𝑥 − 𝑦0‖ = 𝑑.  

We define 𝑧0 by 𝑧0 = 𝑥 − 𝑦0 (see Fig. 37), and we observe that since 𝑑 > 0, 𝑧0 is a non-

zero vector. We conclude the proof by showing that if 𝑦 is an arbitrary vector in 𝑀, then 𝑧0 ⊥ 𝑦. 

For any scalar 𝛼, we have  

‖𝑧0 − 𝛼𝑦‖ = ‖𝑥 − (𝑦0 + 𝛼𝑦)‖ ≥ 𝑑 = ‖𝑧0‖  

𝑠𝑜 ‖𝑧0 − 𝛼𝑦‖2 − ‖𝑧0‖2 ≥ 0  

𝑎𝑛𝑑 − 𝛼(𝑧0, 𝑦) − 𝛼(𝑧0, 𝑦) + |𝛼|2‖𝑦‖2 ≥ 0 (1) 

If we put 𝛼 = 𝛽(𝑧0, 𝑦) for an arbitrary real number 𝛽, then (1) becomes  

−2𝛽|(𝑧0, 𝑦)|2 + 𝛽2|(𝑧0, 𝑦)|2‖𝑦‖2 ≥ 0 

If we now put 𝛼 = |(𝑧0, 𝑦)|2 and ‖𝑦‖2, we obtain  

−2𝛽𝑎 + 𝛽2𝑎𝑏 ≥ 0  

𝑠𝑜  𝛽𝑎(𝛽𝑏 − 2) ≥ 0   (2) 

for all real 𝛽. However, if 𝑎 >  0, then (2) is obviously false for al sufficiently small 

positive 𝛽. We see from this that 𝑎 =  0, which means that 𝑧0 ⊥ 𝑦.  
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This proof of Theorem B may strike the reader as being excessively dependent on 

ingenious computations. If so, he will be pleased to learn that the ideas developed in the next 

sec- tion can be used to provide another proof which is free of computation.  

In order to state our next theorem, we need the following additional concept. Two non-

empty subsets S; and S, of a Hilbert space are said to be orthogonal (written 𝑆1 ⊥ 𝑆2) if 𝑥 ⊥ 𝑦 for 

all 𝑧 in 𝑆1 and 𝑦 in 𝑆2.  

Theorem 2.14 : If 𝑀 and 𝑁 are closed linear subspaces of a Hilbert space 𝐻 such that 𝑀 ⊥ 𝑁, 

then the linear subspace 𝑀 +  𝑁 is also closed.  

Proof.  

Let 𝑧 be a limit point of 𝑀 +  𝑁. It suffices to show that 𝑧 is in 𝑀 +  𝑁. There certainly 

exists a sequence {𝑧𝑛} in 𝑀 +  𝑁 such that 𝑧𝑛 → 𝑧.  

By the assumption that 𝑀 ⊥ 𝑁, we see that 𝑀 and 𝑁 are disjoint, so each 𝑧𝑛, can be 

written uniquely in the form 𝑧𝑛 = 𝑥𝑛 + 𝑦𝑛, where 𝑥𝑛, isin 𝑀 and 𝑦𝑛 isin 𝑁.  

The Pythagorean theorem shows that ‖𝑧𝑚 − 𝑧𝑛‖2 = ‖𝑥𝑚 − 𝑥𝑛‖2 + ‖𝑦𝑚 − 𝑦𝑛‖2so {𝑥𝑛} 

and {𝑦𝑛} are Cauchy sequences in 𝑀and 𝑁. 
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 𝑀 and 𝑁 are closed, and therefore complete, so there exist vectors 𝑥 and 𝑦 in 𝑀 and 𝑁 

such that 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦. Since 𝑥 +  𝑦 is in 𝑀 + 𝑁, our conclusion follows from the fact 

that 𝑧 = 𝑙𝑖𝑚 𝑧𝑛 = 𝑙𝑖𝑚 (𝑥𝑛 +  𝑦𝑛)  = lim 𝑥𝑛  +  lim 𝑦𝑛  =  𝑥 + 𝑦.  

The way is now clear for the proof of our principal theorem.  

Theorem 2.15 : If 𝑀 is a closed linear subspace of a Hilbert space 𝐻, then 𝐻 = 𝑀 ⊕ 𝑀⊥.  

Proof.  

Since 𝑀 and 𝑀⊥ are orthogonal closed linear subspaces of 𝐻, Theorem C shows that 

𝑀 + 𝑀⊥ is also a closed linear subspace of 𝐻. 

 We prove that 𝑀 + 𝑀⊥ equals 𝐻. If this is not so, then by Theorem B there exists a 

vector 𝑧0 ≠ 0 such that 𝑧0 ⊥ (𝑀 + 𝑀⊥).  

This non-zero vector must evidently lie in 𝑀⊥ ∩ 𝑀⊥⊥; and since this is impossible, we 

infer that 𝐻 =  𝑀 + 𝑀⊥.  

To conclude the proof, it suffices to observe that since 𝑀 and 𝑀⊥ are disjoint, the 

statement that 𝐻 = 𝑀 + 𝑀⊥ can be strengthened to 𝐻 = 𝑀 ⊕ 𝑀⊥.  

The main effect of this theorem is to guarantee that a Hilbert space is always rich in 

projections. 

 In fact, if M is an arbitrary closed linear subspace of a Hilbert space H, then it shows that 

there exists a projection defined on H whose range is M and whose null space is M+. This 

satisfactory state of affairs is to be contrasted with the situation in a general Banach space.  

Problems  

1. If 𝑆is a non-empty subset of a Hilbert space, show that 𝑆⊥ = 𝑆⊥⊥⊥. 

2. If 𝑀 is a linear subspace of a Hilbert space, show that 𝑀 is closed ⟺ 𝑀 = 𝑀⊥⊥. 

3. If 𝑆 is a non-empty subset of a Hilbert space 𝐻, show that the set of all linear 

combinations of vectors in 𝑆 is dense in 𝐻 ⇔ 𝑆⊥ = {0}.  
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4. If 𝑆isa non-empty subset of a Hilbert space 𝐻, show that 𝑆⊥⊥ isthe closure of the set of 

all linear combinations of vectors in S. This is usually expressed by saying that 𝑆⊥⊥ is the 

smallest closed linear subspace of 𝐻 which contains 𝑆.  

2.5 : ORTHONORMAL SETS  

An orthonormal set in a Hilbert space 𝐻 is a non-empty subset of 𝐻 which consists of 

mutually orthogonal unit vectors; that is, it is a non-empty subset {𝑒𝑖} of 𝐻 with the following 

properties:  

1. 𝑖 ≠ 𝑗 ⇒ 𝑒𝑖 ⊥ 𝑒𝑗; 

2. ‖𝑒𝑖‖ = 1 for every 𝑖. 

If 𝐻 contains only the zero vector, then it has no orthonormal sets. If 𝐻 contains a non-

zero vector 𝑥, and if we normalize 𝑥 by considering 𝑒 = 𝑥/‖𝑥‖, then the single-element set {𝑒} 

is clearly an orthonormal set. More generally, if {𝑥𝑖} is a non-empty set of mutually orthogonal 

non- zero vectors in 𝐻, and if the 𝑥𝑖’s are normalized by replacing each of them by 𝑒𝑖 = 𝑥𝑖/‖𝑥𝑖‖, 

then the resulting set {𝑒𝑖} is an orthonormal set.  

Example 1. The subset {𝑒1, 𝑒2, … , 𝑒𝑛} of 𝑙2
𝑛, where 𝑒𝑖 is the 𝑛-tuple with 1 in the ithplace and 0’s 

elsewhere, is evidently an orthonormal set in this space.  

Example 2. Similarly, if 𝑒𝑛 is the sequence with 1 in the nth place and 0’s elsewhere, then 

{𝑒1, 𝑒2, … , 𝑒𝑛 , … } isan orthonormal set in 𝑙2.  

At the end of this section, we give some additional examples taken from the field of 

analysis.  

Every aspect of the theory of orthonormal sets depends in one way or another on our first 

theorem.  
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Theorem 2.16 : Let {𝑒1, 𝑒2, … , 𝑒𝑛} be a finite orthonormal set in a Hilbert space 𝐻. If 𝑥 is any 

vector in 𝐻, then  

∑|(𝑥, 𝑒𝑖)|2

𝑛

𝑖=1

≤ ‖𝑥‖2 (1) 

𝑓𝑢𝑟𝑡ℎ𝑒𝑟,     𝑥 − ∑(𝑥, 𝑒𝑖)𝑒𝑖

𝑛

𝑖=1

⊥ 𝑒𝑗 (2) 

for each 𝑗.  

Proof.  

The inequality (1) follows from a computation similar to that used in proving Schwarz’s 

inequality:  

0 ≤ ‖𝑥 − ∑(𝑥, 𝑒𝑖)𝑒𝑖

𝑛

𝑖=1

‖

2

 

= (𝑥 − ∑(𝑥, 𝑒𝑖)𝑒𝑖

𝑛

𝑖=1

𝑥 − ∑(𝑥, 𝑒𝑗)𝑒𝑗

𝑛

𝑗=1

) 

= (𝑥, 𝑥) − ∑(𝑥, 𝑒𝑖)(𝑥, 𝑒𝑖)

𝑛

𝑖=1

− ∑(𝑥, 𝑒𝑗)(𝑥, 𝑒𝑗)

𝑛

𝑗=1

+ ∑ ∑(𝑥, 𝑒𝑖)(𝑥, 𝑒𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

(𝑒𝑖, 𝑒𝑗) 

= ‖𝑥‖2 − ∑|(𝑥, 𝑒𝑖)|2

𝑛

𝑖=1

 

To conclude the proof, we observe that  

(𝑥 − ∑(𝑥, 𝑒𝑖)𝑒𝑖

𝑛

𝑖=1

𝑒𝑗) = (𝑥, 𝑒𝑗) − ∑(𝑥, 𝑒𝑖)(𝑒𝑖

𝑛

𝑖=1

𝑒𝑗) = (𝑥, 𝑒𝑗) − (𝑥, 𝑒𝑗) = 0 

from which statement (2) follows at once.  
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The reader should note that the inequality (1) can be given the following loose but 

illuminating geometric interpretation: the sum of the squares of the components of a vector in 

various perpendicular directions does not exceed the square of the length of the vector itself.  

This is usually called Bessel’s inequality, though, as we shall see below, it is only a 

special case of a more general inequality with the same name.  

In a similar vein, relation (2) says that if we subtract from a vector its com- ponents in 

several perpendicular directions, then the result has no com- ponent left in any of these 

directions.  

Our next task is to prove that both parts of Theorem 2.16 generalize to the case of an 

arbitrary orthonormal set. The main problem hereis to show that the sums in (1) and (2) can be 

defined in a reasonable way when no restriction is placed on the number of 𝑒𝑖’s under 

consideration. The key to this problem lies in the following theorem.  

Theorem 2.17 : If {𝑒𝑖}is an orthonormal set in a Hilbert space 𝐻, and if 𝑥 is any vector in 𝐻, 

then the set 𝑆 = {𝑒𝑖: (𝑥, 𝑒𝑖) ≠ 0}is either empty or countable.  

Proof.  

For each positive integer 𝑛, consider the set  

𝑆𝑛 = {𝑒𝑖: |(𝑥, 𝑒𝑖)|2 > ‖𝑥‖2/𝑛} 

By Bessel’s inequality, 𝑆𝑛 contains at most 𝑛 − 1 vectors. The con- clusion now follows 

from the fact that 𝑆 =∪𝑛=1
∞ 𝑆𝑛 

As our first application of this result, we prove the general form of Bessel’s inequality.  

Theorem 2.18 (Bessel’s Inequality) : If {𝑒𝑖}is an orthonormal set in a Hilbert space 𝐻, then  

∑|(𝑥, 𝑒𝑖)|2 ≤ ‖𝑥‖2 (3)  

for every vector 𝑥 in 𝐻.  
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Proof. 

Our basic obligation here is to explain what is meant by the sum on the left of (3). Once 

this is clearly understood, the proof is easy.  

As in the preceding theorem, we write 𝑆 = {𝑒𝑖: (𝑥, 𝑒𝑖) ≠ 0}. If S is empty, we define 

∑|(𝑥, 𝑒𝑖)|2to be the number 0; and in this case, (3) is obviously true. 

 We now assume that S is non-empty, and we see from Theorem 2.17 that it must be 

finite or countably infinite. 

 If S is finite, it can be written in the form 𝑆 = {𝑒1, 𝑒2, … , 𝑒𝑛 , . . }for some positive integer 

n. In this case, we define ∑|(𝑥, 𝑒𝑖)|2 to be ∑ |(𝑥, 𝑒𝑖)|2∞
𝑖=1 , which is clearly independent of the 

order in which the elements of S are arranged.  

The inequality (3) now reduces to (1), which has already been proved. All that remains is 

to consider the case in which S is countably infinite.  

Let the vectors in S be arranged in a definite order:  

𝑆 = {𝑒1, 𝑒2, … , 𝑒𝑛 , . . } 

By the theory of absolutely convergent series, if ∑ |(𝑥, 𝑒𝑖)|2∞
𝑖=1  converges, then every 

series obtained from this by rearranging its terms also con- verges, and all such series have the 

same sum. 

 We therefore define ∑|(𝑥, 𝑒𝑖)|2 to be ∑ |(𝑥, 𝑒𝑛)|2∞
𝑛=1 , and it follows from the above 

remark that ∑|(𝑥, 𝑒𝑖)|2 is a non-negative extended real number which depends only on S, and not 

on the arrangement of its vectors.  

We conclude the proof by observing that in this case, (3) reduces to the assertion that  

∑|(𝑥, 𝑒𝑛)|2

∞

𝑛=1

≤ ‖𝑥‖2 (4) 
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and since it follows from (1) that no partial sum of the series on the left of (4) can exceed 

‖𝑥‖2, it is clear that (4) itself is true.  

The second part of Theorem A is generalized in essentially the same way.  

Theorem 2.19 : If {𝑒𝑖} is an orthonormal set in a Hilbert space 𝐻, and if 𝑥 is an arbitrary vector 

in 𝐻, then  

𝑥 − ∑(𝑥, 𝑒𝑖)𝑒𝑖 ⊥ 𝑒𝑗 (5) 

for each 𝑗.  

Proof.  

As in the above proof, we define ∑(𝑥, 𝑒𝑖)𝑒𝑖 for each of the various cases, and we prove 

(5) as we go along. We again write  

𝑆 = {𝑒𝑖: (𝑥, 𝑒𝑖) ≠ 0} 

When 𝑆 is empty, we define ∑(𝑥, 𝑒𝑖)𝑒𝑖 to be the vector 0, and we observe that (5) reduces 

to the statement that 𝑥 − 0 = 𝑥is orthogonal to each 𝑒𝑗, which is precisely what is meant by 

saying that 𝑆 is empty. When S is non-empty and finite, and can be written in the form  

𝑆 = {𝑒1, 𝑒2, … , 𝑒𝑛} 

we define ∑(𝑥, 𝑒𝑖)𝑒𝑖 to be ∑ (𝑥, 𝑒𝑖)𝑒𝑖
𝑛
𝑖=1  and in this case, (5) reduces to (2), which has 

already been proved.  

We may assume for the remainder of the proof that S is countably infinite. Let the vectors 

in S be listed in a definite order: 𝑆 = {𝑒1, 𝑒2, … , 𝑒𝑛 , … }. We put 𝑠𝑛 = ∑ (𝑥, 𝑒𝑖)𝑒𝑖
𝑛
𝑖=1 , and we note 

that for 𝑚 >  𝑛 we have  

‖𝑠𝑚 − 𝑠𝑛‖2 = ‖ ∑ (𝑥, 𝑒𝑖)𝑒𝑖

𝑚

𝑖=𝑛+1

‖

2

= ∑ |(𝑥, 𝑒𝑖)𝑒𝑖|
2

𝑚

𝑖=𝑛+1
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Bessel’s inequality shows that the series ∑ |(𝑥, 𝑒𝑖)𝑒𝑖|
2𝑛

𝑖=1  converges, so {𝑠𝑛} is a Cauchy 

sequence in 𝐻; and since 𝐻 is complete, this sequence converges to a vector 𝑠, which we write in 

the form 𝑠 = ∑ (𝑥, 𝑒𝑛)𝑒𝑛
∞ 
𝑛=1 .  

We now define ∑(𝑥, 𝑒𝑖)𝑒𝑖 to be ∑ (𝑥, 𝑒𝑛)𝑒𝑛
∞ 
𝑛=1 , and deferring for a moment the question 

of what happens when the vectors in S are rearranged we observe that (5) follows from (2) and 

the continuity of the inner product:  

(𝑥 − ∑(𝑥, 𝑒𝑖)𝑒𝑖 , ej) = (𝑥 − 𝑠, 𝑒𝑗) 

= (𝑥, 𝑒𝑗) − (𝑠, 𝑒𝑗) 

          = (𝑥, 𝑒𝑗) − (lim 𝑠𝑛 , 𝑒𝑗) 

         = (𝑥, 𝑒𝑗) − lim(𝑠𝑛 , 𝑒𝑗) 

 = (𝑥, 𝑒𝑗) − (𝑥, 𝑒𝑗) 

= 0                         

All that remains is to show that this definition of ∑(𝑥, 𝑒𝑗)𝑒𝑖 is valid, in the sense that it 

does not depend on the arrangement of the vectors in 𝑆.Let the vectors in 𝑆 be rearranged in any 

manner:  

𝑆 = {𝑓1, 𝑓2, … , 𝑓𝑛 , … } 

We put 𝑆𝑛
′ = ∑ (𝑥𝑖𝑓𝑖)𝑓𝑖

𝑛
𝑖=1  and we see—as above—that the sequence {𝑠𝑛

′ } converges to a 

limit 𝑠′, which we write in the form𝑠′ = ∑ (𝑥𝑛𝑓𝑛)𝑓𝑛
∞
𝑛=1 .  

We conclude the proof by showing that 𝑠’ equals 𝑠. Let 𝜖 >  0 be given, and let no be a 

positive integer so large that if 𝑛 ≥ 𝑛0, then ‖𝑠𝑛 − 𝑠‖ < 𝜖, ‖𝑠𝑛
′ − 𝑠′‖ < 𝜖 and ∑ |(𝑥, 𝑒𝑖)|2 <∞

𝑖=𝑛+1

𝜖2. For some positive integer 𝑚0 > 𝑛0, all terms of 𝑠𝑛0
 occur among those of 𝑠𝑚1

′  so 𝑠𝑚1
′ − 𝑠𝑛0

is 

a finite sum of terms of the form (𝑥, 𝑒𝑗)𝑒𝑖for𝑖 = 𝑛0 + 1, 𝑛0 + 2, ….  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

61 
 

This yields‖𝑠𝑚0
′ − 𝑠𝑛0

‖
2

≤ ∑ |(𝑥, 𝑒𝑖)|2∞
𝑖=𝑚0+1 < 𝜖2  so ‖𝑠𝑚0

− 𝑠𝑛0
‖ < 𝜖and 

‖𝑠′ − 𝑠‖ ≤ ‖𝑠′ − 𝑠𝑚0
′ ‖ + ‖𝑠𝑚0

′ − 𝑠𝑛0
‖ + ‖𝑠𝑛0

− 𝑠‖ 

< 𝜖 + 𝜖 + 𝜖                                       

= 3𝜖                                                    

Since 𝜖 is arbitrary, this shows that 𝑠’ =  𝑠.  

Let 𝐻 be a non-zero Hilbert space, so that the class of all its orthonormal sets is non-

empty.  

This class is clearly a partially ordered set with respect to set inclusion. An orthonormal 

set {𝑒𝑖} in 𝐻 is said to be complete if it is maximal in this partially ordered set, that is, if it is 

impossible to adjoin a vector 𝑒 to {𝑒𝑖} in such a way that {𝑒𝑖𝑒} is an orthonormal set which 

properly contains {𝑒𝑖}.  

Theorem 2.20 : Every non-zero Hilbert space contains a complete orthonormal set.  

Proof : The statement follows at once from Zorn’s lemma, since the union of any chain of 

orthonormal sets is clearly an upper bound for the chain in the partially ordered set of all 

orthonormal sets.  

Orthonormal sets are truly interesting only when they are complete. The reasons for this 

are presented in our next theorem.  

Theorem 2.21 : Let 𝐻 be a Hilbert space, and let {𝑒𝑖} be an orthonormal set in 𝐻. Then the 

following conditions are all equivalent to one another:  

(1) {𝑒𝑖}is complete;  

(2) 𝑥 ⊥ {𝑒𝑖} ⟹ 𝑥 = 0 

(3) if 𝑥is an arbitrary vector in 𝐻, then 𝑥 = ∑(𝑥, 𝑒𝑖)𝑒𝑖 

(4) if 𝑥is an arbitrary vector in 𝐻, then ‖𝑥‖2 = ∑|(𝑥, 𝑒𝑖)|2.  
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Proof.  

We prove that each of the conditions (1), (2), and (3) implies the one following it and that 

(4) implies (1).  

(1) ⇒ (2). If (2) is not true, there exists a vector 𝑥 ≠ 0 such that𝑥 ⊥ {𝑒𝑖}. We now define 

𝑒 by 𝑒 = 𝑥/‖𝑥‖, and we observe that {𝑒𝑖𝑒}is an orthonormal set which properly contains {𝑒𝑖}. 

This contradicts the completeness of {𝑒𝑖}.  

(2) ⇒ (3). By Theorem D, 𝑥 − ∑(𝑥, 𝑒𝑖)𝑒𝑖 is orthogonal to {𝑒𝑖}, so (2) implies that 𝑥 −

∑(𝑥, 𝑒𝑖)𝑒𝑖 = 0, or equivalently, that 𝑥 = ∑(𝑥, 𝑒𝑖)𝑒𝑖.  

(3) ⇒ (4). By the joint continuity of the inner product, the expression in (3) yields  

‖𝑥‖2 = (𝑥, 𝑥) 

= (∑(𝑥, 𝑒𝑖)𝑒𝑖, ∑(𝑥, 𝑒𝑗)𝑒𝑗) 

= ∑(𝑥, 𝑒𝑖)(𝑥, 𝑒𝑖) 

= ∑|(𝑥, 𝑒𝑖)|2 

(4) ⇒ (1). If {𝑒𝑖} is not complete, it is a proper subset of an orthonormal set {𝑒𝑖𝑒}. Since 𝑒 

is orthogonal to all the 𝑒𝑖’s, (4) yields ‖𝑒‖2 = ∑|(𝑒, 𝑒𝑖)|2 = 0, and this contradicts the fact that 𝑒 

is a unit vector.  

There is some standard terminology which is often used in connection with this theorem. 

Let {𝑒𝑖} be a complete orthonormal set in a Hilbert space 𝐻, and let 𝑥 be an arbitrary vector in 𝐻. 

The numbers (𝑥, 𝑒𝑖) are called the Fourier coefficients of 𝑥, the expression 𝑥 = ∑(𝑥, 𝑒𝑖)𝑒𝑖; is 

called the Fourier expansion of 𝑥, and the equation ‖𝑥‖2 = ∑|(𝑥, 𝑒𝑖)|2 is called Parseval’s 

equation—all with respect to the particular complete ortho- normal set {𝑒𝑖} under consideration. 

These terms come from the classical theory of Fourier series, as indicated in our next example.  

Example 3. Consider the Hilbert space 𝐿2 associated with the measure space [0,2𝜋], where 

measure is Lebesgue measure and integrals are Lebesgue integrals! This space essentially 
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consists of all complex functions 𝑓 defined on [0,2𝜋] which are Lebesgue measurable and 

squareintegrable, in the sense that  

∫ |𝑓(𝑥)|2
2𝜋

0

𝑑𝑥 < ∞ 

Its norm and inner product are defined by  

‖𝑓‖ = (∫ |𝑓(𝑥)|2
2𝜋

0

𝑑𝑥)

1/4 

 

𝑎𝑛𝑑    (𝑓, 𝑔) = ∫ 𝑓(𝑥)
2𝜋

0

𝑔(𝑥)𝑑𝑥 

A simple computation shows that the functions 𝑒𝑖𝑛𝑠, for  

𝑛 = 0, ±1, ±2, …, 

are mutually orthogonal in 𝐿2:  

∫ 𝑒
2𝜋 

0

𝑒−𝑖𝑛𝑥𝑑𝑥 = {
0          𝑚 ≠ 𝑛
2𝜋        𝑚 = 𝑛

 

It follows from this that the functions 𝑒𝑛 (𝑛 =  0, ±1, ±2, . . . ) defined by 

𝑒𝑛(𝑥) = 𝑒𝑖𝑛𝑥/√2𝜋 form an orthonormal set in 𝐿2. For any function 𝑓 in 𝐿2, the numbers  

𝑐𝑛 = (𝑓, 𝑒𝑛) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝑛𝑥

2𝜋 

0

𝑑𝑥 (6) 

are its classical Fourier coefficients, and Bessel’s inequality takes the form  

∑ |𝑐𝑛|2

∞

𝑛=−∞

≤ ∫ |𝑓(𝑥)|2
2𝜋 

0

𝑑𝑥 

It is a fact of very great importance in the theory of Fourier series that the orthonormal set 

{𝑒𝑛} is complete in 𝐿2. As we have seen in Theorem F, the completeness of {𝑒𝑛} is equivalent to 
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the assertion that for every 𝑓 in 𝐿2, Bessel’s inequality can be strengthened to Parseval’s 

equation:  

∑ |𝑐𝑛|2

∞

𝑛=−∞

= ∫ |𝑓(𝑥)|2
2𝜋 

0

𝑑𝑥 

Theorem F also tells us that the completeness of {𝑒𝑛} is equivalent to the statement that 

each 𝑓 in 𝐿2 has a Fourier expansion:  

𝑓(𝑥) =
1

√2𝜋
∑ 𝑐𝑛𝑒𝑖𝑛𝑥

∞

𝑛=−∞

 (7) 

It must be emphasized that this expansion is not to be interpreted as saying that the series 

converges pointwise to the function. The meaning of (7) is that the partial sums of the series, that 

is, the vectors 𝑓𝑛 in 𝐿2 defined by  

𝑓𝑛(𝑥) =
1

√2𝜋
∑ 𝑐𝑘𝑒𝑖𝑘𝑥

𝑛

𝑘=−𝑛

 (7) 

converge to the vector f in the sense of 𝐿2:  

‖𝑓𝑛 − 𝑓‖ → 0 

This situation is often expressed by saying that f is the limit in the mean of the 𝑓𝑛’s. We 

add one final remark to our description of this portion of the theory of Fourier series.  

If 𝑓 is an arbitrary function in 𝐿2 with Fourier coefficients 𝑐𝑛, defined by (6), then 

Bessel’s inequality tells us that the series ∑ |𝑐𝑛|2∞
𝑛=−∞  converges. 

 The celebrated Riesz-Fischer theorem asserts the converse: if 𝑐𝑛 (𝑛 =  0, ±1, ±2, . . . ) 

are given complex numbers for which ∑ |𝑐𝑛|2∞
𝑛=−∞ converges, then there exists a function 𝑓 in 

𝐿2, whose Fourier coefficients are the 𝑐𝑛’s.  

If we grant the completeness of 𝐿2 as a metric space, this is very easy to prove. 
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 All that is necessary is to use the 𝑐𝑛’s to define a sequence of 𝑓𝑛’s in accordance with 

(8). The functions 
𝑒𝑖𝑛𝑥

√2𝜋
 form an orthonormal set, so for 𝑚 >  𝑛 we have  

‖𝑓𝑚 − 𝑓𝑛‖2 = ∑ |𝑐𝑘|2

𝑚

|𝑘|=𝑛+1

 (9) 

By the convergence of ∑ |𝑐𝑛|2∞
𝑛=−∞  the sum on the right of (9) can be made as small as 

we please for all sufficiently large n and all 𝑚 > 𝑛. 

 This tells us that the 𝑓𝑛’s form a Cauchy sequence in 𝐿2; and since 𝐿2is complete, there 

exists a function 𝑓 in 𝐿2 such that 𝑓𝑛 → 𝑓.  

This function 𝑓 is given by (7), and the 𝑐𝑛’s are clearly its Fourier coefficients. It is 

apparent from these remarks that the essence of the Riesz-Fischer theorem lies in the 

completeness of 𝐿2 as a metric space.  

We shall have use for one further item in the general theory of orthonormal sets, namely, 

the Gram-Schmidt orthogonalization process.  

Suppose that {𝑥1, 𝑥2, … , 𝑥𝑛, … } is a linearly independent set in a Hilbert space 𝐻. The 

problem is to exhibit a constructive procedure for converting this set into a corresponding 

orthonormal set {𝑒1, 𝑒2, … , 𝑒𝑛 , … } with the property that for each n the linear subspace of H 

spanned by {𝑒1, 𝑒2, … , 𝑒𝑛} is the same as that spanned by {𝑥1, 𝑥2, … , 𝑥𝑛}.  

Our first step is to normalize z,;—which is necessarily non- zero—by putting  

𝑒1 =
𝑥1

‖𝑥1‖
 

The next step is to subtract from z2 its component in the direction of 𝑒1 to obtain the 

vector 𝑥2 − (𝑥2𝑒1)𝑒1 orthogonal to 𝑒1, and then to normalize this by putting  

𝑒2 =
𝑥2 − (𝑥2𝑒1)𝑒1

‖𝑥2 − (𝑥2𝑒1)𝑒1‖
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We observe that since 𝑥2 is not a scalar multiple of 𝑥1, the vector 𝑥2 − (𝑥2𝑒1)𝑒1 is not 

zero, so the definition of 𝑒2 is valid. Also, it is clear that 𝑒2 is a linear combination of 𝑥1 and 𝑥2, 

and that 𝑥2 is a linear combination of 𝑒1 and 𝑒2. The next step is to subtract from 𝑥2 its 

components in the directions of 𝑒1 and 𝑒2 to obtain a vector orthogonal to 𝑒1 and 𝑒2, and then to 

normalize this by putting  

𝑒3 =
𝑥3 − (𝑥3𝑒1)𝑒1 − (𝑥3𝑒2)𝑒2

‖𝑥3 − (𝑥3𝑒1)𝑒1 − (𝑥3𝑒2)𝑒2‖
 

If this process is continued in the same way, it clearly produces an orthonormal set 

{𝑒1, 𝑒2, … , 𝑒𝑛 , … } with the required property.  

Example 4. Many orthonormal sets of great interest and importance in analysis can be obtained 

conveniently by applying the Gram-Schmidt process to sequences of simple functions.  

(a) In the space Ly associated with the interval [— 1,1], the functions 𝑥𝑛 (𝑛 =

 0, 1, 2, . . . ) are linearly independent. If we take these functions to be the 𝑥𝑛’s in the Gram-

Schmidt process, then the 𝑒𝑛’s are the normalized Legendre polynomials.  

(b) Consider the space 𝐿2 over the entire real line. If the 𝑥𝑛’s here are taken to be the 

functions 𝑥𝑛𝑒−
𝑥2

2  (𝑛 =  0, 1, 2, . . . ), then the corresponding 𝑒𝑛’s are the normalized Hermite 

functions.  

(c) Consider the space 𝐿2. associated with the interval [0, +∞). If the 𝑥𝑛’s are the 

functions 𝑥𝑛𝑒−𝑥  (𝑛 =  0, 1, 2, . . . ), then the 𝑒𝑛’s are the normalized Laguerre functions.  

Each of the orthonormal sets described in the above example can be shown to be 

complete in its corresponding Hilbert space. The analysis involved in a detailed study of these 

matters is quite complicated and has no proper place in the present book. The reader should 

recognize, however—and this is our only reason for mentioning the material in Examples 3 and 

4—that the theory of Hilbert spaces does have significant contacts with many solid topics in 

analysis.  
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Problems  

1. Let {𝑒1, 𝑒2, … , 𝑒𝑛} bea finite orthonormal set in a Hilbert space 𝐻, and let 𝑥 be a vector in 

𝐻. If 𝛼1, 𝛼2, … , 𝛼𝑛 are arbitrary scalars, show that ‖𝑥 − ∑ 𝑎𝑖𝑒𝑖
𝑛
𝑖=1 ‖ attains its minimum 

value ⟺ 

𝛼𝑖 = (𝑥, 𝑒𝑖) 

for each 𝑖. (Hint: expand ‖𝑥 − ∑ 𝑎𝑖𝑒𝑖
𝑛
𝑖=1 ‖, add and subtract ∑ |(𝑥, 𝑒𝑖)|𝑛

𝑖=1
2
, and obtain an 

expression of the form ∑ |(𝑥, 𝑒𝑖) − 𝛼𝑖|
𝑛
𝑖=1

2
{? in the result.)  

2. Show that the orthonormal sets described in Examples 1 and 2 are complete.  

3. Show that every orthonormal set in a Hilbert space is contained in some complete 

orthonormal set, and use this fact to give an alternative proof of Theorem 53-B.  

4. Prove that a Hilbert space H is separable = every orthonormal set in His countable.  

5. Show that an orthonormal set in a Hilbert space is linearly independent, and use this to 

prove that a Hilbert space is finite-dimensional ⇔ every complete orthonormal set is a 

basis.  

6. Prove that any two complete orthonormal sets in a Hilbert space H have the same 

cardinal number. This cardinal number is called the orthogonal dimension of H (if H has 

no complete orthonormal sets, its orthogonal dimension is said to be 0).  
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UNIT - 3 

3.1 THE CONJUGATE SPACE H*  

We pointed out in the introduction to this chapter that one of the fundamental properties 

of a Hilbert space H is the fact that there is a natural correspondence between the vectors in H 

and the functionals in H*. Our purpose in this section is to develop the features of this 

correspondence which are relevant to our work with operators in the rest of the chapter.  

Let 𝑦 be a fixed vector in 𝐻, and consider the function 𝑓𝑦  defined on𝐻 by 𝑓𝑦(𝑥)  =

 (𝑥, 𝑦). It is easy to see that 𝑓𝑦  is linear, for  

𝑓𝑦(𝑥1 + 𝑥2) = (𝑥1 + 𝑥2, 𝑦) 

= (𝑥1, 𝑦) + (𝑥2, 𝑦) 

= 𝑓𝑦(𝑥1) + 𝑓𝑦(𝑥2) 

and 

𝑓𝑦(𝛼𝑥) = (𝛼𝑥, 𝑦) 

= 𝛼(𝑥, 𝑦) 

= 𝛼𝑓𝑦(𝑥) 

Further, 𝑓𝑦  is continuous and is therefore a functional, for Schwarz’s inequality gives  

|𝑓𝑦(𝑥)| = |(𝑥, 𝑦)| 

≤ ‖𝑥‖‖𝑦‖ 

which shows that‖𝑓𝑦‖ ≤ ‖𝑦‖. Even more, equality is attained here, that is, ‖𝑓𝑦‖ = ‖𝑦‖. 

This is clear if 𝑦 =  0; and if 𝑦 ≠ 0, it follows from  

‖𝑓𝑦‖ = sup{|𝑓𝑦(𝑥)|: ‖𝑥‖ = 1} 
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≥ |𝑓𝑦 (
𝑦

‖𝑦‖
)| 

= |(
𝑦

‖𝑦‖
, 𝑦)| 

= ‖𝑦‖ 

To summarize, we have seen that 𝑦 → 𝑓𝑦 , is a norm-preserving mapping of H into H*. 

This observation would be of no more than passing interest if it were not for the fact that every 

functional in H* arises in just this way.  

Theorem 3.1 : Let 𝐻 be a Hilbert space, and let 𝑓 be an arbitrary functional in H*. Then there 

exists a unique vector 𝑦 in 𝐻 such that  

𝑓(𝑥) = (𝑥, 𝑦) (1) 

for every 𝑥in 𝐻.  

Proof.  

It is easy to see that if such a 𝑦 exists, then it is necessarily unique.  

For if we also have 𝑓(𝑥)  =  (𝑥, 𝑦’) for all 𝑥, then (𝑥, 𝑦’)  =  (𝑥, 𝑦) and (𝑥, 𝑦’ —  𝑦)  =  0 

for all 𝑥; and since 0 is the only vector orthogonal to every vector, this implies that 𝑦’ —  𝑦 =

 0or𝑦’ =  𝑦.  

We now turn to the problem of showing that y does exist. If 𝑓 =  0, then it clearly 

suffices to choose 𝑦 =  0.  

We may therefore assume that 𝑓 ≠ 0. The null space M of f is thus a proper closed linear 

subspace of H, and by Theorem, there exists a non-zero vector yo which is orthogonal to M.  

We show that if a is a suitably chosen scalar, then the vector 𝑦 = 𝛼𝑦0 meets our 

requirements. We first observe that no matter what a may be, (1) is true for every 𝑥 in 𝑀;  
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for 𝑓(𝑥)  =  0 for such an 𝑥, and since 𝑥 is orthogonal to 𝑦0, we also have (𝑥, 𝑦)  =  0. This 

allows us to focus our attention on choosing 𝛼 in such a way that (1) is true for 𝑥 =  𝑦0. The 

condition this imposes on 𝛼 is that  

𝑓(𝑦0) = (𝑦0, 𝛼𝑦0) = 𝛼‖𝑦0‖2 

We therefore choose a to be 𝑓(𝑦0)/‖𝑦0‖2, and it follows that (1) is true for every 𝑥 in 𝑀 

and for 𝑥 =  𝑦0.  

It is easily seen that each 𝑥 in 𝐻 can be written in the form 𝑥 =  𝑚 + 𝛽𝑦0 with 𝑚 in 𝑀: 

all that is necessary is to choose 𝛽 in such a way that𝑓(𝑥 − 𝛽𝑦0) = 𝑓(𝑥) − 𝛽𝑓(𝑦0) = 0, and this 

is accomplished by putting𝛽 = 𝑓(𝑥)/𝑓(𝑦0).  

Our conclusion that (1) is true for every 𝑥 in 𝐻 now follows at once from  

𝑓(𝑥) = 𝑓(𝑚 + 𝛽𝑦0) 

= 𝑓(𝑚) + 𝛽𝑓(𝑦0) 

    = (𝑚, 𝑦) + 𝛽(𝑦0, 𝑦) 

= (𝑚 + 𝛽𝑦0 , 𝑦) 

= (𝑥, 𝑦) 

This result tells us that the norm-preserving mapping of H into H* defined by  

𝑦 → 𝑓𝑦     𝑤ℎ𝑒𝑟𝑒   𝑓𝑦(𝑥) = (𝑥, 𝑦) (2) 

is actually a mapping of H onto H*, It would be pleasant if (2) were also a linear 

mapping., This is.not quite true, however, for 

𝑓𝑦1+𝑦2
= 𝑓𝑦1

+ 𝑓𝑦2
    𝑎𝑛𝑑    𝑓𝛼𝑦 = 𝛼𝑓𝑦 (3) 

It is an easy consequence of (3) that the mapping (2) is an isometry, for‖𝑓𝑥 − 𝑓𝑦‖ =

‖𝑓𝑥−𝑦‖ = ‖𝑥 − 𝑦‖. We state several interesting additional facts about this mapping (and what it 
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enables us to do) in the problems, and we leave their verification to the reader. It should be 

remembered, however, that the real significance of this entire circle of ideas lies in its influence 

on the theory of the operators on H. We begin the treatment of these matters in the next section.  

Problems  

1. Verify relations (3).  

2. Let H be a Hilbert space, and show that H* is also a Hilbert space with respect to the 

inner product defined by (𝑓𝑥 , 𝑓𝑦)  =  (𝑦, 𝑥). In just the same way, the fact that H* is a 

Hilbert space implies that H** is a Hilbert space whose inner product is given by 

(𝐹𝑓, 𝐹𝑔) = (𝑔, 𝑓).  

3. Let H be a Hilbert space. We have two natural mappings of H into H**, the second of 

which is onto: the Banach space natural imbedding 𝑓 → 𝐹𝑥where 𝐹𝑥(𝑓)  =  𝑓(𝑥), and the 

product mapping 𝑥 → 𝑓𝑥 → 𝐹𝑓𝑥
, where 𝑓𝑥(𝑦)  =  (𝑦, 𝑥) and𝐹𝑓𝑥

(𝑓)  =  (𝑓, 𝑓𝑥). Show that 

these mappings are equal, and conclude that H is reflexive. Show also that (𝐹𝑥 , 𝐹𝑦)  =

 (𝑥, 𝑦).  

3.2 THE ADJOINT OF AN OPERATOR  

Throughout the rest of this chapter, we focus our attention on a fixed but arbitrary Hilbert 

space H, and unless we specifically state otherwise, it is to be understood that H is the context for 

all our discussions and theorems.  

Let T be an operator on H. We saw in Sec. 51 that T gives rise to an operator T* (its 

conjugate) on H*, where T* is defined by  

(𝑇∗𝑓)𝑥 = 𝑓(𝑇𝑥) 
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Fig. 3.1. The conjugate and the adjoint of 𝑻 

We also saw that the mapping T → T* is an isometric isomorphism of 𝒞(H) into 𝒞(H*) 

which reverses products and preserves the identity transformation.  

In the same way, T* gives rise to an operator T** on H**; and since H is reflexive, it 

follows that T** = T when H** is identified with H by means of the natural imbedding.  

These statements depend only on the fact that H is a reflexive Banach space.  

We now bring its Hilbert space character into the picture, and we use the natural 

correspondence between H and H* discussed in the previous section to pull T* down to H. The 

details of this procedure are as follows (see Fig. 3.1).  

Let y be a vector in H, and 𝑓𝑦  its corresponding functional in H*; operate with T* on Fig. 

3.1. The conjugate and the 𝑓𝑦  to obtain a functional 𝑓𝑥  = T*𝑓𝑦and adjoint of T return to its 

corresponding vector z in H. 
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 There are three mappings under consideration here, and we are forming their product:  

𝑦 → 𝑓𝑦 → 𝑇∗𝑓𝑦 = 𝑓𝑧 → 𝑧 (1) 

We write z = T*y, and we call this new mapping T* of H into itself the adjoint of T. The 

same symbol is used for the adjoint of 7 as for its conjugate because these two mappings are 

actually the same if H and H* are identified by means of the natural correspondence.  

It is easy to keep track of whether T* signifies the conjugate or the adjoint of T by 

noticing whether it operates on functionals or on vectors. 

 The action of the adjoint can be linked more closely to the structure of H by observing 

that for every vector x we have (T*𝑓𝑦)x = 𝑓𝑥 ,(Tx) = (Tx,y) and (T*𝑓𝑦)x = 𝑓𝑦(x) = (x,z) = (x,T*y), 

so that  

(𝑇𝑥, 𝑦) = (𝑥, 𝑇∗𝑦) (2) 

Forall𝑥and 𝑦. Equation (2) ismuch more than merely a property of the adjoint of 𝑇, for it 

uniquely determines this adjoint.  

The proof is simple: if 𝑇’ is any mapping of H into itself such that (𝑇𝑥, 𝑦) = (𝑥, 𝑇′𝑦) for 

all 𝑥 and 𝑦, then (𝑥, 𝑇′𝑦) = (𝑥, 𝑇∗𝑦) for all 𝑥, so 𝑇’𝑦 =  𝑇∗𝑦−1 and since the latter is true for all 

𝑦, 𝑇’ =  𝑇∗.  

Our remarks in the above paragraph have shown that to each operator T on H there 

corresponds a unique mapping T* of H into itself (called the adjoint of T) which satisfies relation 

‘(2) for all 𝑥 and 𝑦.  

There is a more direct but less natural approach to these ideas, one which avoids any 

reference to the conjugate of T. 

 If 𝑦 is fixed, it is clear that the expression (𝑇𝑥, 𝑦) is a scalar-valued continuous linear 

function of 𝑥. By Theorem, there exists a unique vector 𝑧 such that (𝑇𝑥, 𝑦)  =  (𝑥, 𝑧) for all 𝑥. 

We now write z = T*y, and since y is arbitrary, we again have relation (2) for all 𝑥 and𝑦. The 

fact that T* is uniquely determined by (2) follows just as before.  
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The principal value of our approach to the definition of the adjoint (as opposed to that 

just mentioned) lies in the motivation it provides for considering adjoints at all.  

We can express this by emphasizing that an operator on a Banach space always has a 

conjugate which operates on the conjugate space; and when the Banach space happens to be a 

Hilbert space, then, as we have seen, the natural correspondence discussed in the previous 

section makes it almost inevitable that we regard the conjugate as an operator on the space itself. 

Once the definition of the adjoint is fully understood, however, there is no further need to 

mention conjugates. All our future work with adjoints will be based on Eq. (2), and from this 

point on, the symbol T* will always signify the adjoint of T (and never its conjugate).  

As our first step in exploring the properties of adjoints, we verify that T* actually is an 

operator on H (all we know so far is that it maps A into itself). For any y and z, and for all x, we 

have  

(𝑥, 𝑇∗(𝑦 + 𝑧)) = (𝑇𝑥, 𝑦 + 𝑧) 

= (𝑇𝑥, 𝑦) + (𝑇𝑥, 𝑧) 

= (𝑥, 𝑇∗𝑦) + (𝑥, 𝑇∗𝑧) 

= (𝑥, 𝑇∗𝑦 + 𝑇∗𝑧) 

so  

𝑇∗(𝑦 + 𝑧) = 𝑇∗𝑦 + 𝑇∗𝑧 

The relation 𝑇∗(𝛼𝑦) = 𝛼𝑇∗𝑦 

is proved similarly, so T* is linear. It remains to be seen that T* is continuous; and to 

prove this, we note that  

‖𝑇∗𝑦‖2 = (𝑇∗𝑦, 𝑇∗𝑦) 

      = (𝑇𝑇∗𝑦, 𝑦) 
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          ≤ ‖𝑇𝑇∗𝑦‖‖𝑦‖ 

               ≤ ‖𝑇‖‖𝑇∗𝑦‖‖𝑦‖ 

implies that ‖𝑇∗𝑦‖ ≤ ‖𝑇‖‖𝑦‖ for all 𝑦, so  

‖𝑇∗‖ ≤ ‖𝑇‖ 

These facts tell us that T → T* is a mapping of 𝒞(H) into itself. This mapping is called 

the adjoint operation on 𝒞(H).  

Theorem 3.2. The adjoint operation T→T* on 𝒞(H) has the following properties:  

(1) (𝑇1 + 𝑇2) = 𝑇1
∗ + 𝑇2

∗ 

(2) (𝛼T)* = 𝛼T*;  

(3) (𝑇1𝑇2)∗ = 𝑇1
∗𝑇2

∗ 

(4) T**=T 

(5) ‖𝑇∗‖ = ‖𝑇‖ 

(6) ‖𝑇∗𝑇‖ = ‖𝑇‖2 

Proof.  

The arguments used in proving (1) to (4) are all essentially the same. As an illustration of 

the method, we observe that (3) follows from the fact that for all 𝑥 and 𝑦 we have  

(𝑥, (𝑇1𝑇2)∗𝑦) = (𝑇1𝑇2𝑥, 𝑦) 

                           = (𝑇2𝑥, 𝑇1
∗𝑦) 

                            = (𝑥, 𝑇2
∗𝑇1

∗𝑦) 

To prove (5), we note that we already have‖𝑇∗‖ ≤ ‖𝑇‖; and if we apply this to T* 

instead of T and use (4), we obtain ‖𝑇‖ = ‖𝑇∗∗‖ ≤ ‖𝑇∗‖. Half of (6) follows from (5) and the 

inequality (5), for  

‖𝑇∗𝑇‖ ≤ ‖𝑇∗‖‖𝑇‖ 
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            = ‖𝑇‖‖𝑇‖ 

      = ‖𝑇‖2 

and the fact that ‖𝑇‖2 ≤ ‖𝑇∗𝑇‖is an immediate consequence of  

‖𝑇𝑥‖2 = (𝑇𝑥, 𝑇𝑥) 

               = (𝑇∗𝑇𝑥, 𝑥) 

                   = ‖𝑇∗𝑇𝑥‖‖𝑥‖ 

                   ≤ ‖𝑇∗𝑇‖‖𝑥‖2 

The presence of the adjoint operation is what distinguishes the theory of the operators on 

H from the more general theory of the operators on a reflexive Banach space. In the next three 

sections, we use this operation as a tool by means of which we single out for special study 

certain types of operators on H whose theory is particularly complete and satisfying.  

Problems  

1. Prove parts (1), (2), and (4) of Theorem A.  

2. Show that the adjoint operation is one-to-one onto as a mapping of 𝒞(H) into itself.  

3. Show that 0* = 0 and I* = I. Use the latter to show that if T is non-singular, then T* is 

also non-singular, and that in this case (𝑇∗)−1 = (𝑇−1)∗.  

1. 4, Show that ‖𝑇∗𝑇‖ = ‖𝑇‖2.  

3.3 SELF-ADJOINT OPERATORS  

There is an interesting analogy between the set 𝒞(H) of all operators on our Hilbert space 

H and the set C of all complex numbers. This can be summarized by observing that each is a 

complex algebra together with a mapping of the algebra onto itself (T→T* and 𝑧 → 𝑧) and that 

these mappings have similar properties. We shall see that this analogy is quite useful as an 

intuitive guide to the study of the operators on H. The most significant difference between these 

systems is that multi- plication in the algebra 𝒞(H) is in general non-commutative, and it will 
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become clear as we proceed that this is the primary source of the much greater structural 

complexity of 𝒞(H).  

The most important subsystem of the complex plane is the real line, which is 

characterized by the relation 𝑧 = 𝑧.  By analogy, we consider those operators A on H which 

equal their adjoints, that is, which satisfy the condition A = A*. Such an operator is said to be 

self-adjoint. The self-adjoint operators on H are evidently those which are related in the simplest 

possible way to their adjoints.  

We know that 0* = 0 and I* = I, so 0 and I are self-adjoint. It 𝐴1 and 𝐴2 are self-adjoint, 

and if 𝛼 and 𝛽 are real numbers, then  

(𝛼𝐴1 + 𝛽𝐴2)∗ = 𝛼𝐴1
∗ + 𝛽𝐴2

∗  

                            = 𝛼𝐴1 + 𝛽𝐴2 

shows that 𝛼𝐴1 + 𝛽𝐴2 is also self-adjoint. Further, if {𝐴𝑛} isa sequence of self-adjoint 

operators which converges to an operator A, then it is easy to see that A is also self-adjoint; for  

‖𝐴 − 𝐴∗‖ ≤ ‖𝐴 − 𝐴𝑛‖ + ‖𝐴𝑛 − 𝐴𝑛
∗ ‖ + ‖𝐴𝑛

∗ − 𝐴∗‖ 

= ‖𝐴 − 𝐴𝑛‖ + ‖(𝐴𝑛 − 𝐴)∗‖ 

= ‖𝐴 − 𝐴𝑛‖ + ‖𝐴𝑛 − 𝐴‖ 

= 2‖𝐴𝑛 − 𝐴‖ → 0                       

shows that A − A* = 0, so A = A*. These remarks yield our first theorem.  

Theorem 3.3 : The self-adjoint operators in 𝒞(H) form a closed real linear subspace of 𝒞(H)—

and therefore a real Banach space which contains the identity transformation.  

The reader will notice that we have said nothing here about the product of two self-

adjoint operators. Very little is known about such products, and the following simple result 

represents almost the extent of our information.  
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Theorem 3.4 : If 𝐴1 and 𝐴2are self-adjoint operators on 𝐻, then their product 𝐴1𝐴2is self-adjoint 

⇔ 𝐴1𝐴2 = 𝐴2𝐴1. 

Proof. 

This is an obvious consequence of  

(𝐴1𝐴2)∗ = 𝐴2
∗ 𝐴1

∗ = 𝐴2𝐴1 

The order properties of self-adjoint operators are more interesting, and we devote the 

remainder of the section to establishing some of the simpler facts in this direction.  

If T is an arbitrary operator on H, it is easy to see that  

𝑇 = 0 ⇔ (𝑇𝑥, 𝑦) = 

for all𝑥 and 𝑦. It is also clear that T = 0 = (Tx,x) = 0 for all𝑥. We shall need the converse 

of this implication.  

Theorem 3.5 If T is an operator on H for which (Tx,x) = 0 for all x, then T = 0.  

Proof.  

It suffices to show that (Tx,y) = 0 for any x and y, and the proof of this depends on the 

following easily verified identity:  

(𝑇(𝛼𝑥 + 𝛽𝑦), 𝛼𝑥 + 𝛽𝑦) = |𝛼|2(𝑇𝑥, 𝑥) − |𝛽|2(𝑇𝑦, 𝑦) = 𝛼𝛽(𝑇𝑥, 𝑦) + 𝛼𝛽(𝑇𝑦, 𝑥) (1) 

We first observe that by our hypothesis, the left side of (1)—and therefore the right side 

as well—equals 0 for all a and g. If we put 𝛼 = 1 and𝛽 = 1, then (1) becomes  

(𝑇𝑥, 𝑦) + (𝑇𝑦, 𝑥) = 0 (2) 

and if we put 𝛼 = 𝑖 and 𝛽 = 1, we get  

𝑖(𝑇𝑥, 𝑦) + 𝑖(𝑇𝑦, 𝑥) = 0 (3) 
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Dividing (3) by < and adding the result to (2) yields 2(𝑇𝑥, 𝑦) = 0 so (𝑇𝑥, 𝑦)  =  0 and 

the proof is complete.  

It is worth emphasizing that this proof makes essential use of the fact that the scalars are 

the complex numbers (and not merely the real numbers).  

We now apply this result to proving our next theorem, which indicates that self-adjoint 

operators are linked to real numbers by stronger ties than might be suspected from the loose 

analogy that led to their definition.  

Theorem 3.6 : An operator 𝑇 on 𝐻 is self-adjoint ⇔  (𝑇𝑥, 𝑥) is real for all 𝑥.  

Proof :  

If T is self-adjoint, then  

(𝑇𝑥, 𝑥) = (𝑥, 𝑇𝑥) 

                 = (𝑥, 𝑇∗𝑥) 

               = (𝑇𝑥, 𝑥) 

shows that (𝑇𝑥, 𝑥) is real for all 𝑥. On the other hand, if (𝑇𝑥, 𝑥) is real for all 𝑥, then 

(𝑇𝑥, 𝑥) = (𝑇𝑥, 𝑥) = (𝑥, 𝑇∗𝑥) = (𝑇∗𝑥, 𝑥) or  

([𝑇 − 𝑇∗]𝑥, 𝑥) = 0 

for all 𝑥. By Theorem C, this implies that T−T* = 0, so T = T*.  

This theorem enables us to define a respectable and useful order relation on the set of all 

self-adjoint operators. If 𝐴1 and 𝐴2 are self- adjoint, we write 𝐴1 ≤ 𝐴2 if (𝐴1𝑥, 𝑥) ≤ (𝐴2𝑥, 𝑥) for 

all 𝑥. The main elementary facts about this relation are summarized in  

Theorem 3.7 : The real Banach space of all self-adjoint operators on H is a partially ordered set 

whose linear structure and order structure are related by the following properties:  
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(1) if 𝐴1 ≤ 𝐴2, then 𝐴1 + 𝐴 ≤ 𝐴2 + 𝐴 for every 𝐴;  

(2) if 𝐴1 ≤ 𝐴2 and 𝛼 > 0, then 𝛼𝐴1 ≤ 𝛼𝐴2.  

Proof.  

The relation in question is obviously reflexive and transitive (see Sec. 8). To show that it 

is also antisymmetric, we assume that 𝐴1 ≤ 𝐴2 and 𝐴2 ≤ 𝐴1.  

This implies at once that ([𝐴1 − 𝐴2]𝑥, 𝑥) = 0 for all 𝑥, so by Theorem C, 𝐴1 − 𝐴2 = 0 

and 𝐴1 = 𝐴2. 

 The proofs of properties (1) and (2) are easy. For instance, if 𝐴1 ≤ 𝐴2, so that (𝐴1𝑥, 𝑥) ≤

(𝐴2𝑥, 𝑥) for all 𝑥, then (𝐴1𝑥, 𝑥) + (𝐴𝑥, 𝑥) ≤ (𝐴2𝑥, 𝑥) + (𝐴𝑥, 𝑥) or ([𝐴1 − 𝐴]𝑥, 𝑥) for all 𝑥, so 

𝐴1 + 𝐴 ≤ 𝐴2 + 𝐴. The proof of (2) is similar.  

A self-adjoint operator 𝐴 is said to be positive if 𝐴 ≥ 0, that is, if (𝐴𝑥, 𝑥) ≥ 0 for all 𝑥. It 

is clear that 0 and 𝐼 are positive, as are T*T and TT* for an arbitrary operator T.  

Theorem 3.8 : If 𝐴 is a positive operator on 𝐻, then 𝐼 +  𝐴 is non-singular. In particular, I + 

T*T and I + TT* are non-singular for an arbitrary operator T on H.  

Proof.  

We must show that I + A is one-to-one onto as a mapping of H into itself. First, it is one-

to-one, for  

(𝐼 + 𝐴)𝑥 = 0 ⇒ 𝐴𝑥 = −𝑥 ⇒ (𝐴𝑥, 𝑥) = (−𝑥, 𝑥) = −‖𝑥‖2 ≥ 0 ⇒ 𝑥 = 0. 

We next show that the range 𝑀 of 𝐼 +  𝐴 is closed. It follows from ‖(𝐼 + 𝐴)𝑥‖2 =

‖𝑥‖2 + ‖𝐴𝑥‖2 + 2(𝐴𝑥, 𝑥)and the assumption that 𝐴 is positive—that ‖𝑥‖ ≤ ‖(𝐼 + 𝐴)𝑥‖. By 

this inequality and the com- pleteness of 𝐻, 𝑀 is complete and therefore closed.  

We conclude the proof by observing that 𝑀 =  𝐻; for otherwise there would exist a non- 

zero vector 𝑥0 orthogonal to 𝑀, and this would contradict the fact that(𝑥0, [𝐼 + 𝐴]𝑥0) = 0 ⇒

‖𝑥0‖2 = −(𝐴𝑥0, 𝑥0) ≤ 0 ⇒ 𝑥0 = 0.  
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If the reader wonders why we fail to show that the partially ordered set of all self-adjoint 

operators is a lattice, the reason is simple: it isn’t true. As a matter of fact, this system is about as 

far from being a lattice as a partially ordered set can be, for it can be shown that two operators in 

the set have a greatest lower bound = they are comparable. This whole situation is intimately 

related to questions of commutativity for algebras of operators and is too complicated for us to 

explore here. For further details, see Kadison [22].  

Problems  

1. Define a new operation of ‘multiplication’ for self-adjoint operators by𝐴1 ∘ 𝐴2 =

(𝐴1𝐴2 + 𝐴2𝐴1)/2, and note that 𝐴1 ∘ 𝐴2 is always self-adjoint and that it equals 

𝐴1𝐴2whenever 𝐴1 and 𝐴2 commute. Show that this operation has the following 

properties:  

𝐴1 ∘ 𝐴2 = 𝐴2 ∘ 𝐴2 

𝐴1 ∘ (𝐴2 + 𝐴3) = 𝐴1 ∘ 𝐴2 + 𝐴1 ∘ 𝐴3 

𝛼(𝐴1 ∘ 𝐴2) = (𝛼𝐴1) ∘ 𝐴2 = 𝐴1 ∘ (𝛼𝐴2) 

and 𝐴 ∘ 𝐼 = 𝐼 ∘ 𝐴 = 𝐴. Showalso that 𝐴1 ∘ (𝐴2 ∘ 𝐴3) = (𝐴1 ∘ 𝐴2) ∘ 𝐴3 whenever 𝐴1 and 

𝐴2commute.  

2. If 𝑇 is any operator on 𝐻, it is clear that|(𝑇𝑥, 𝑥)| ≤ ‖𝑇𝑥‖‖𝑥‖ ≤ ‖𝑇‖‖𝑥‖2; so if 𝐻 ≠ {0}, 

we have sup{|𝑇𝑥, 𝑥|/‖𝑥‖2: 𝑥 ≠ 0} ≤ ‖𝑇‖. Prove that if 𝑇 is self-adjoint, then equality 

holds here. (Hint: write𝑎 = sup{|𝑇𝑥, 𝑥|/‖𝑥‖2: 𝑥 ≠ 0} = sup{|𝑇𝑥, 𝑥|/‖𝑥‖ = 1}, and 

show that‖𝑇𝑥‖ ≤ 𝑎 whenever ‖𝑥‖ = 1 by putting 𝑏 = ‖𝑇𝑥‖1/2if𝑇𝑥 ≠ 0—and 

considering  

4‖𝑇𝑥‖2 = (𝑇(𝑏𝑥 + 𝑏−1𝑇𝑥), (𝑏𝑥 + 𝑏−1𝑇𝑥)) − (𝑇(𝑏𝑥 + 𝑏−1𝑇𝑥), (𝑏𝑥 + 𝑏−1𝑇𝑥)) 

≤ 𝑎[‖𝑏𝑥 + 𝑏−1𝑇𝑥‖]2 + ‖𝑏𝑥 + 𝑏−1𝑇𝑥‖ 

= 4𝑎‖𝑇𝑥‖ 
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3.4 NORMAL AND UNITARY OPERATORS  

An operator N on H is said to be normal if it commutes with its adjoint, that is, if NN* = 

N*N. The reason for the importance of normal operators will not become clear until the next 

chapter. We shall see that they are the most general operators on H for which a simple and 

revealing structure theory is possible. Our purpose in this section is to present a few of their more 

elementary properties which are necessary for our later work.  

It is obvious that every self-adjoint operator is normal, and that if N is normal and a is 

any scalar, then aN is also normal. Further, the limit N of any convergent sequence {N;.} of 

normal operators is normal; for we know that 𝑁𝑘*→ 𝑁*, so  

‖𝑁𝑁∗ − 𝑁∗𝑁‖ ≤ ‖𝑁𝑁∗ − 𝑁𝑘𝑁𝑘
∗‖ + ‖𝑁𝑘𝑁𝑘

∗ − 𝑁𝑘
∗𝑁𝑘‖ + ‖𝑁𝑘

∗𝑁𝑘 − 𝑁∗𝑁‖ 

= ‖𝑁𝑁∗ − 𝑁𝑘𝑁𝑘
∗‖ + ‖𝑁𝑘

∗𝑁𝑘 − 𝑁∗𝑁‖ → 0 

which implies that NN* − N*N = 0. These remarks prove  

Theorem 3.9 : The set of all normal operators on H is a closed subset of 𝒞(H) which contains 

the set of all self-adjoint operators and is closed under scalar multiplication.  

It is natural to wonder whether the sum and product of two normal operators are 

necessarily normal. They are not, but nevertheless, we can say a little in this direction.  

Theorem 3.10 : If 𝑁1 and 𝑁2 are normal operators on 𝐻 with the property that either commutes 

with the adjoint of the other, then 𝑁1 + 𝑁2and 𝑁1𝑁2are normal.  

Proof.  

It is clear by taking adjoints that  

𝑁1𝑁2
∗ = 𝑁2

∗𝑁1 ⟺ 𝑁2𝑁1
∗ = 𝑁1

∗𝑁2 

so the assumption implies that each commutes with the adjoint of the other. To show that 

𝑁1 + 𝑁2 is normal under the stated conditions, we have only to compare the results of the 

following computations:  
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(𝑁1 + 𝑁2)(𝑁1 + 𝑁2)∗ = (𝑁1 + 𝑁2)(𝑁1
∗ + 𝑁2

∗) 

                                                           = 𝑁1𝑁1
∗ + 𝑁1𝑁2

∗ + 𝑁2
∗𝑁1 + 𝑁2𝑁2

∗ 

𝑎𝑛𝑑 (𝑁1 + 𝑁2)∗(𝑁1 + 𝑁2) = (𝑁1
∗ + 𝑁2

∗)(𝑁1 + 𝑁2) 

                                                           = 𝑁1
∗𝑁1 + 𝑁1

∗𝑁2 + 𝑁2
∗𝑁1 + 𝑁2

∗𝑁2 

The fact that 𝑁1𝑁2 is normal follows similarly from  

𝑁1𝑁2(𝑁1𝑁2)∗ = 𝑁1𝑁2𝑁2
∗𝑁1

∗ 

                           = 𝑁1𝑁2
∗𝑁2𝑁1

∗ 

                           = 𝑁2
∗𝑁1𝑁1

∗𝑁2 

                           = 𝑁2
∗𝑁1

∗𝑁1𝑁2 

                                = (𝑁1𝑁2)∗𝑁1𝑁2 

By definition, a self-adjoint operator 𝐴 is one which satisfies the identity A*x = Ax. 

Many properties of self-adjoint operators do not depend on this, but only on the weaker identity 

‖𝐴∗𝑥‖ = ‖𝐴𝑥‖. Our next theorem shows that all such properties are shared by normal operators.  

Theorem 3.11 : An operator 𝑇 on 𝐻 is normal ‖𝑇∗𝑥‖ = ‖𝑇𝑥‖ for every 𝑥.  

Proof. 

We have,  

‖𝑇∗𝑥‖ = ‖𝑇𝑥‖ ⇔ ‖𝑇∗𝑥‖2 = ‖𝑇𝑥‖2 

                                       ⇔ (𝑇∗𝑥, 𝑇∗𝑥) = (𝑇𝑥, 𝑇𝑥) 

                                       ⇔ (𝑇𝑇∗𝑥, 𝑥) = (𝑇∗𝑇𝑥, 𝑥) 

                                       ⇔ ([𝑇𝑇∗ − 𝑇∗𝑇]𝑥, 𝑥) = 0 
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The following consequence of this result will be useful in our later work.  

Theorem 3.12 : If 𝑁 is a normal operator on 𝐻, then‖𝑁2‖ = ‖𝑁‖2.  

Proof.  

The preceding theorem shows that  

‖𝑁2𝑥‖ = ‖𝑁𝑁𝑥‖ = ‖𝑁∗𝑁𝑥‖ 

for every 𝑥, and this implies that ‖𝑁2𝑥‖ = ‖𝑁∗𝑁‖. By Theorem 56-A, we have 

‖𝑁∗𝑁‖ = ‖𝑁‖2, so the proof is complete.  

We know that any complex number 𝑧 can be expressed uniquely in the form 𝑧 = 𝑎 + 𝑖𝑏 

where 𝑎 and 𝑏 are real numbers, and that these real numbers are called the real and imaginary 

parts of 𝑧 and are given by 𝑎 = (𝑧 + 𝑧)/2 and𝑏 = (𝑧 − 𝑧)/2𝑖.  

The analogy between general operators and complex numbers, and between self-adjoint 

operators and real numbers, suggests that for an arbitrary operator 𝑇 on 𝐻 we form 𝐴1 =

(𝑇 + 𝑇∗)/2 and 𝐴2 = (𝑇 − 𝑇∗)/2𝑖. 𝐴1 and 𝐴2 are clearly self- adjoint, and they have the 

property that 𝑇 = 𝐴1 + 𝑖𝐴2.  

The unique- ness of this expression for 𝑇 follows at once from the fact that  

𝑇∗ = 𝐴1 − 𝑖𝐴2 

The self-adjoint operators 𝐴1 and 𝐴2 are called the real part and the tmaginary part of 𝑇.  

We emphasized earlier that the complicated structure of 𝒞(𝐻) is due in large part to the 

fact that operator multiplication is in general non-commutative. 

 Since our future work will be focused mainly on normal operators, it is of interest to see 

as the following theorem shows that the existence of non-normal operators can be traced directly 

to the non-commutativity of self-adjoint operators.  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

85 
 

Theorem 3.13 : If 𝑇 is an operator on 𝐻, then 𝑇 is normal ⇔ its real and imaginary parts 

commute.  

Proof.  

If 𝐴1 and 𝐴2 are the real and imaginary parts of 𝑇, so that 𝑇 = 𝐴1 + 𝑖𝐴2and 𝑇∗ = 𝐴1 −

𝑖𝐴2, then  

𝑇𝑇∗ = (𝐴1 + 𝑖𝐴2)(𝐴1 − 𝑖𝐴2) 

= 𝐴1
2 + 𝐴2

2 + 𝑖(𝐴2𝐴1 − 𝐴1𝐴2) 

and  

𝑇∗𝑇 = (𝐴1 − 𝑖𝐴2)(𝐴1 + 𝑖𝐴2) 

= 𝐴1
2 + 𝐴2

2 + 𝑖(𝐴1𝐴2 − 𝐴2𝐴1) 

It is clear that if 𝐴1𝐴2 = 𝐴2𝐴1, then 𝑇𝑇∗ = 𝑇∗𝑇. Conversely, if 𝑇𝑇∗ = 𝑇∗𝑇, then 𝐴1𝐴2 −

𝐴2𝐴1 = 𝐴2𝐴1 − 𝐴1𝐴2, so 2𝐴1𝐴2 = 2𝐴2𝐴1and 𝐴1𝐴2 = 𝐴2𝐴1.  

Perhaps the most important subsystem of the complex plane after the real line is the unit 

circle, which is characterized by either of the equivalent identities |𝑧|  =  1 or 𝑧𝑧 = 𝑧𝑧 = 1. An 

operator U on H which satisfies the equation UU* = U*U =I is said to be unitary.  

Unitary operators which are obviously normal are thus the natural analogues of complex 

numbers of absolute value 1. It is clear from the definition that the unitary operators on H are 

precisely the non-singular operators whose inverses equal their adjoints. The geometric 

significance of these operators is best. understood in the light of our next theorem.  

Theorem 3.14 : If T is an operator on H, then the following conditions are all equivalent to one 

another:  

(1) 𝑇*T= 𝑇;  

(2) (𝑇𝑥, 𝑇𝑦)  =  (𝑥, 𝑦) for all 𝑥 and 𝑦;  

(3) ‖𝑇𝑥‖ = ‖𝑥‖for all 𝑥.  
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Proof.  

If (1) is true, then (𝑇∗𝑇𝑥, 𝑦) = (𝑥, 𝑦)or (𝑇𝑥, 𝑇𝑦)  =  (𝑥, 𝑦)for all 𝑥 and 𝑦, so (2) is true; 

and if (2) is true, then by taking 𝑦 =  𝑥 we obtain (𝑇𝑥, 𝑇𝑥)  =  (𝑥, 𝑥) or ‖𝑇𝑥‖2 = ‖𝑥‖2 for all 𝑥, 

so (3) is true.  

The fact that (3) implies (1) is a consequence of Theorem and the follow- ing chain of 

implications:  

‖𝑇𝑥‖ = ‖𝑥‖ ⇒ ‖𝑇𝑥‖2 = ‖𝑥‖2 

                              ⇒ (𝑇𝑥, 𝑇𝑥)  =  (𝑥, 𝑥) 

                              ⇒ (𝑇∗𝑇𝑥, 𝑦) = (𝑥, 𝑦) 

                                ⇒ ([𝑇∗𝑇 − 𝐼]𝑥, 𝑥) = 0 

An operator on H with property (3) of this theorem is simply an isometric isomorphism 

of H into itself. That an operator of this kind need not be unitary is easily seen by considering the 

operator on 𝑙2 defined by  

𝑇{𝑥1, 𝑥2, … } = {0, 𝑥1, 𝑥2, … } 

which preserves norms but has no inverse. These ideas lead at once to  

Theorem 3.15 : An operator 𝑇on 𝐻 is unitary ⇔ it is an isometric isomorphism of 𝐻 onto itself.  

Proof. 

If T is unitary, then we know from the definition that it is onto; and since by Theorem F it 

preserves norms, it is an isometric isomorphism of H onto itself.  

Conversely, if T is an isometric isomorphism of H onto itself, then 𝑇−1 exists, and by 

Theorem F we have T*T =I. It now follows that (T*T)𝑇−1 = I𝑇−1, so T* =𝑇−1) and TT* = T*T 

= I, which shows that T is unitary.  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

87 
 

This theorem makes quite clear the nature of unitary operators: they are precisely those 

one-to-one mappings of H onto itself which preserve all structure—the linear operations, the 

norm, and the inner product.  

Problems  

1. If T is an arbitrary operator on H, and if 𝛼 and 𝛽 are scalars such that |𝛼| = |𝛽|, show 

that 𝛼𝑇 + 𝛽𝑇∗is normal.  

2. If H is finite-dimensional, show that every isometric isomorphism of H into itself is 

unitary.  

3. Show that an operator T onH is unitary ⇔T({𝑒𝑖}) is a complete orthonormal set whenever 

{𝑒𝑖} is.  

4. Show that the unitary operators on H form a group.  

3.5  PROJECTIONS  

According to the definition given in Sec. 50, a projection on a Banach space 𝐵 is an 

idempotent operator on 𝐵, that is, an operator 𝑃 with the property that 𝑃2  =  𝑃. It was proved in 

that section that each projection 𝑃 determines a pair of closed lincar subspaces 𝑀 and 𝑁 the 

range and null space of 𝑃  such that 𝐵 = 𝑀 ⊕ 𝑁, and also, conversely, that each such pair of 

closed linear subspaces M and N determines a projection P with range M and null space N. In 

this way, there is established a one-to-one correspondence between projections on B and pairs of 

closed linear subspaces of B which span the whole space and have only the zero vector in 

common.  

The context of our present work, however, is the Hilbert space H, and not a general 

Banach space, and the structure which H enjoys in addition to being a Banach space enables us 

to single out for special attention those projections whose range and null space are orthogonal. 

Our first theorem gives a convenient characterization of these projections.  

Theorem 3.16  If P is a projection on H with range M and null space N, then M ⊥ N ⇔ P is self-

adjoint; and in this case, 𝑁 =  𝑀⊥.  
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Proof. 

Each vector z in H can be written uniquely in the form 𝑧 = 𝑥 + 𝑦 with 𝑥and 𝑦in 𝑀and N. 

If 𝑀 ⊥ 𝑁, so that 𝑥 ⊥ 𝑦, then P* = P will follow by Theorem 57-C from (𝑃∗𝑧, 𝑧) = (𝑃𝑧, 𝑧); and 

this is a consequence of  

(𝑃∗𝑧, 𝑧) = (𝑧, 𝑃𝑧) = (𝑧, 𝑥) = (𝑥 + 𝑦, 𝑥) = (𝑥, 𝑥) + (𝑦, 𝑥) = (𝑥, 𝑥) 

and (𝑃𝑧, 𝑧) = (𝑥, 𝑧) = (𝑥, 𝑥 + 𝑦) = (𝑥, 𝑥) + (𝑥, 𝑦) = (𝑥, 𝑥). If, conversely, P* = P, then 

the conclusion that 𝑀 ⊥ 𝑁 follows from the fact that for any x and y in M and N we have  

(𝑥, 𝑦) = (𝑃𝑥, 𝑦) = (𝑥, 𝑃∗𝑦) = (𝑥, 𝑃𝑦) = (𝑥, 0) = 0 

All that remains is to see that if 𝑀 ⊥ 𝑁, then𝑁 = 𝑀⊥. It is clear that 𝑁 ⊆ 𝑀⊥ and if 𝑁 is 

a proper subset of 𝑀⊥, and therefore a proper closed linear subspace of the Hilbert space 𝑀⊥, 

then Theorem  implies that there exists a non-zero vector 𝑧0 in 𝑀⊥ such that 𝑧0 ⊥ 𝑁. Since 𝑧0 ⊥

𝑀and 𝑧0 ⊥ 𝑁and since 𝐻 = 𝑀 ⊕ 𝑁, it follows that 𝑧0 ⊥ 𝐻. This is impossible, so we conclude 

that 𝑁 = 𝑀⊥.  

A projection on H whose range and null space are orthogonal is sometimes called a 

perpendicular projection.  

The only projections considered in the theory of Hilbert spaces are those which are 

perpendicular, so it is customary to omit the adjective and to refer to them simply as projections. 

In the light of this agreement and Theorem A, a projection on H can be defined as an operator P 

which satisfies the conditions 𝑃2 = 𝑃 and P* = P. The operators 0 and I are projections, and they 

are distinct ⇔ 𝐻 ≠ {0}. 

The great importance of the projections on H rests mainly on Theorem which allows us to 

set up a natural one-to-one correspondence between projections and closed linear subspaces. To 

each projection 𝑃 there corresponds its range 𝑀 = {𝑃𝑥: 𝑥 ∈ 𝐻}, which is a closed linear 

subspace; and conversely, to each closed linear subspace M there corresponds the projection P 

with range M defined by 𝑃(𝑥 +  𝑦)  =  𝑥, where x and y are in 𝑀 and 𝑀⊥. Either way, we speak 

of P as the projection on M.  
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It is clear that P is the projection on 𝑀 ⇔ 𝐼 − 𝑃 is the projection on 𝑀⊥. Also, if P is the 

projection on M, then  

𝑥 ∈ 𝑀 ⇔ 𝑃𝑥 = 𝑥 ⇔ ‖𝑃𝑥‖ = ‖𝑥‖ 

The first equivalence here was proved in Problem 44-11; and since for every 𝑥 in H we 

have  

‖𝑥‖2 = ‖𝑃𝑥 + (𝐼 − 𝑃)𝑥‖2 = ‖𝑃𝑥‖2 + ‖(𝐼 − 𝑃)𝑥‖2 (1) 

the non-trivial part of the second is given by the following chain of implications:  

‖𝑃𝑥‖ = ‖𝑥‖ ⇒ ‖𝑃𝑥‖2 = ‖𝑥‖2 ⇒ ‖(𝐼 − 𝑃)𝑥‖2 = 0 ⇒ 𝑃𝑥 = 𝑥 

Relation (1) also shows that ‖𝑃𝑥‖ ≤ ‖𝑥‖ for every 𝑥, so ‖𝑃‖ < 1. Ifz is an arbitrary 

vector in H, it is easy to see that  

(𝑃𝑥, 𝑥) = (𝑃𝑃𝑥, 𝑥) = (𝑃𝑥, 𝑃∗𝑥) = (𝑃𝑥, 𝑃𝑥) = ‖𝑃𝑥‖2 ≥ 0 (2)  

so 𝑃 is a positive operator (0 ≤ 𝑃) in the sense of Sec. 57. Since 𝐼 −  𝑃 is also a 

projection, we also have0 ≤ 𝐼 − 𝑃 or 𝑃 ≤ 𝐼, so 0 ≤ 𝑃 ≤ 𝐼.  

Let 𝑇 be an operator on 𝐻. A closed linear subspace 𝑀 of 𝐻 is said to be invariant under 

T if 𝑇(𝑀) ⊆ 𝑀. When this happens, the restriction of T to M can be regarded as an operator on 

M alone, and the action of T on vectors outside of M can be ignored. If both M and 𝑀⊥ are 

invariant under T, we say that M reduces T, or that T is reduced by M. This situation is much 

more interesting, for it allows us to replace the study of T as a whole by the study of its 

restrictions to M and 𝑀⊥, and it invites the hope that these restrictions will turn out to be 

operators of some particularly simple type. In the following four theorems, we translate these 

concepts into relations between M and the projection on M.  

Theorem 3.17 : A closed linear subspace M of H is invariant under an operator T⇔ 𝑀⊥ is 

invariant under T*.  

Proof.  
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Since 𝑀⊥⊥ = 𝑀 and T** = T, it suffices by symmetry to prove that if M is invariant 

under T, then 𝑀⊥ is invariant under T*.  

If 𝑦 is a vector in 𝑀⊥, our conclusion will follow from (𝑥, 𝑇∗𝑦) = 0 for all 𝑥 in 𝑀. But 

this is an easy consequence of (𝑥, 𝑇∗𝑦)  =  (𝑇𝑥, 𝑦), for the invariance of M under T implies that 

(𝑇𝑥, 𝑦) = 0.  

Theorem 3.18 : A closed linear subspace M of H reduces an operator T⇔ M is invariant under 

beth T and T*.  

Proof. 

This is obvious from the definitions and the preceding theorem.  

Theorem 3.19 : If P is the projection on a closed linear subspace M of H, then M is invariant 

under an operator T⇔TP ⇔PT.  

Proof.  

If M is invariant under T and 𝑥 is an arbitrary vector in H, then 𝑇𝑃𝑥 is in 𝑀, so 𝑃𝑇𝑃𝑥 =

 𝑇𝑃𝑥 and 𝑃𝑇𝑃 =  𝑇𝑃. 

 Conversely, if 𝑇𝑃 =  𝑃𝑇𝑃 and 𝑥 is a vector in M, then 𝑇𝑥 =  𝑇𝑃𝑥 =  𝑃𝑇𝑃𝑥 is also in 

M, so M is invariant under T.  

Theorem 3.20 : If P is the projection on a closed linear subspace M of H, then M reduces an 

operator T⇔TP = PT.  

Proof.  

M reduces T ⇔ M is invariant under T and T*⇔TP = PTP and T*P = PT*P ⇔ TP = 

PTP and PT = PTP.  

The last statement in this chain clearly implies that TP = PT; it also follows from it, as we 

see by multiplying TP = PT on the right and left by P.  
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Our next theorem shows how projections can be used to express the statement that two 

closed linear subspaces of H are orthogonal.  

Theorem 3.21 : If P and Q are the projections on closed linear subspaces M and N of H, 

then𝑀 ⊥ 𝑁 ⇔ 𝑃𝑄 = 0 ⇔ 𝑄𝑃 = 0.  

Proof. 

We first remark that the equivalence of 𝑃𝑄 =  0 and 𝑄𝑃 =  0 is clear by taking adjoints. 

If 𝑀 ⊥ 𝑁, so that𝑁 ⊆ 𝑀⊥, then the fact that 𝑄𝑥 is in 𝑁 for every 𝑥 implies that 𝑃𝑄𝑥 =  0, so 

𝑃𝑄 =  0.  

If, conversely, 𝑃𝑄 =  0, then for every 𝑥 in 𝑁 we have 𝑃𝑥 =  𝑃𝑄𝑥 =  0, so 𝑁 ⊆ 𝑀⊥and 

𝑀 ⊥ 𝑁.  

Motivated by this result, we say that two projections 𝑃 and 𝑄 are orthogonal if 𝑃𝑄 =  0.  

Our final theorem describes the circumstances under which a sum of projections is also a 

projection.  

Theorem 3.22 : If 𝑃1, 𝑃2, … , 𝑃𝑛 are the projections on closed linear sub spaces 𝑀1. 𝑀2, … , 𝑀𝑛of 

H, then 𝑃 = 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑛isa projection ⇔ the 𝑃𝑖’s arepatrwise orthogonal (in the sense 

that𝑃𝑖𝑃𝑗 = 0 whenever 𝑖 ≠ 𝑗); and in this case, P is the projection on  

𝑀 = 𝑀1 + 𝑀2 + ⋯ + 𝑀𝑛 

Proof. 

Since P is clearly self-adjoint, it is a projection = it is idem- potent. If the P,’s are 

pairwise orthogonal, then a simple computation shows at once that P is idempotent.  

To prove the converse, we assume that P is idempotent. Let 𝑥 be a vector in the range of 

𝑃𝑖, so that 𝑥 = 𝑃𝑥. Then  
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‖𝑥‖2 = ‖𝑃𝑥‖2 ≤ ∑‖𝑃𝑖𝑥‖2

𝑛

𝑗=1

= ∑(𝑃𝑗𝑥, 𝑥)

𝑛

𝑗=1

= (𝑃𝑥 , 𝑥) = ‖𝑃𝑥‖2 ≤ ‖𝑥‖2 

We conclude that equality must hold all along the line here, so  

∑‖𝑃𝑖𝑥‖2

𝑛

𝑗=1

= ‖𝑃𝑥‖2 

and‖𝑃𝑗𝑥‖ = 0 for 𝑗 ≠ 𝑖.  

Thus the range of 𝑃𝑖 is contained in the null space of 𝑃𝑗 that is𝑀𝑖 ⊆ 𝑀𝑗
⊥ for every𝑗 ≠ 𝑖. 

This means that 𝑀𝑖 ⊥ 𝑀𝑗whenever 𝑖 ≠ 𝑗, and our conclusion that the 𝑃𝑖’s are pairwise orthogonal 

now follows from the preceding theorem.  

We prove the final statement in two steps. First, we observe that since ‖𝑃𝑥‖ = ‖𝑥‖ for 

every 𝑥 in 𝑀𝑖 each 𝑀𝑖 is contained in the range of 𝑃, and therefore 𝑀 is also contained in the 

range of 𝑃. Second, if 𝑥 is a vector in the range of 𝑃, then  

𝑥 = 𝑃𝑥 = 𝑃1𝑥 + 𝑃2𝑥 + ⋯ + 𝑃𝑛𝑥 

is evidently in 𝑀.  

There are many other ways in which the algebraic structure of the set of all projections on 

H can be related to the geometry of its closed linear subspaces. and several of these are given in 

the problems below.  

The significance of projections in the general theory of operators on H is the theme of the 

next chapter.  

As we shall see, the essence of the matter (the spectral theorem) is that every normal 

operator is made of projections in a way which clearly reveals the geometric nature of its action 

on the vectors in H.  
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Problems  

1. If P and Q are the projections on closed linear subspaces M and N of H, prove that PQ is 

a projection ⇔ PQ = QP. In this case, show that PQ is the projection on M∩ N.  

2. If P and Q are the projections on closed linear subspaces M and N of H, prove that the 

following statements are all equivalent to one another:  

(a) 𝑃 ≤ 𝑄;  

(b) ‖𝑃𝑥‖ ≤ ‖𝑄𝑥‖for every 𝑥;  

(c) 𝑀 ⊆ 𝑁;  

(d)  𝑃𝑄 = 𝑃;  

(e) 𝑄𝑃 = 𝑃.  

(Hint: the equivalence of (a) and (b) is easy to prove, as is that of (c), (d), 

and (e); prove that (d) implies (a) by using  

(𝑃𝑥, 𝑥) = ‖𝑃𝑥‖2 = ‖𝑃𝑄𝑥‖2 ≤ ‖𝑄𝑥‖2 = (𝑄𝑥, 𝑥) 

and prove that (b) implies (c) by observing that if 𝑥 is in M, then ‖𝑥‖ =

‖𝑃𝑥‖ ≤ ‖𝑄𝑥‖ ≤ ‖𝑥‖ 

3. Show that the projections on H form a complete lattice with respect to their natural 

ordering as self-adjoint operators. (Compare this situation with that described in the last 

paragraph of Sec. 57.)  
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CHAPTER - 4 

4.1 DETERMINANTS AND THE SPECTRUM OF AN OPERATOR  

Determinants are often advertised to students of elementary mathematics as a 

computational device of great value and efficiency for solving numerical problems involving 

systems of linear equations. This is somewhat misleading, for their value in problems of this kind 

is very limited. On the other hand, they do have definite importance as a theoretical tool. Briefly, 

they provide a numerical means of distinguishing between singular and non-singular matrices 

(and operators).  

This is not the place for developing the theory of determinants in any detail. Instead, we 

assume that the reader already knows something about them, and we confine ourselves to listing 

a few of their simpler properties which are relevant to our present interests.  

Let [𝛼𝑖𝑗] be an𝑛 × 𝑛 matrix. The determinant of this matrix, which we denote by 

𝑑𝑒𝑡([𝛼𝑖𝑗]), is a scalar associated with it in such a way that  

(1) 𝑑𝑒𝑡([𝛿𝑖𝑗])  =  1;  

(2) 𝑑𝑒𝑡([𝛼𝑖𝑗][𝛽𝑖𝑗]) = 𝑑𝑒𝑡([𝛼𝑖𝑗]) 𝑑𝑒𝑡([𝛽𝑖𝑗]) ;  

(3) 𝑑𝑒𝑡([𝛼𝑖𝑗]) ≠ 0 ⇔ [𝛼𝑖𝑗] is non-singular; and  

(4) 𝑑𝑒𝑡([𝛼𝑖𝑗] − 𝜆[𝛿𝑖𝑗]) is a polynomial, with complex coefficients, of degree 𝑛 in the 

variable 𝜆.  

The determinant function det is thus a scalar-valued function of matrices which has 

certain properties. In elementary work, the determinant of a matrix is usually written out with 

vertical bars, as follows,  

det([𝛼𝑖𝑗]) = |

𝛼11 𝛼12… 𝛼1𝑛

𝛼21 𝛼22… 𝛼2𝑛

…   ……   …
𝛼𝑛1 𝛼𝑛2… 𝛼𝑛𝑛

| 

and is evaluated by complicated procedures which are of no concern to us here.  
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We now consider an operator Ton H. If Band B’ are bases for H, then the matrices [𝛼𝑖𝑗] 

and [𝛽𝑖𝑗] of T relative to B and B’ may be entirely different, but nevertheless they have the same 

determinant. For we know from the previous section that there exists a non-singular matrix [𝛾𝑖𝑗] 

such that  

[𝛽𝑖𝑗] = [𝛾𝑖𝑗]
−1

[𝛼𝑖𝑗][𝛾𝑖𝑗] 

and therefore, by properties (1), (2), and (3), we have  

det([𝛼𝑖𝑗]) = det ([𝛾𝑖𝑗]
−1

[𝛼𝑖𝑗][𝛾𝑖𝑗]) 

= det ([𝛾𝑖𝑗]
−1

) det([𝛼𝑖𝑗]) det([𝛾𝑖𝑗]) 

= det ([𝛾𝑖𝑗]
−1

) det([𝛾𝑖𝑗]) det([𝛼𝑖𝑗]) 

= det ([𝛾𝑖𝑗]
−1

[𝛾𝑖𝑗]) det([𝛼𝑖𝑗]) 

= det([𝛿𝑖𝑗]) det([𝛼𝑖𝑗]) 

= det([𝛼𝑖𝑗]) 

This result allows us to speak of the determinant of the operator T, meaning, of course, 

the determinant of its matrix relative to any basis; and from this point on, we shall regard the 

determinant function primarily as a scalar-valued function of the operators on H. We at once 

obtain the following four properties for this function, which are simply translations of those 

stated above:  

(1) 𝑑𝑒𝑡(𝐼)  =  𝐼;  

(2) det(𝑇1𝑇2) = det(𝑇1) det(𝑇2);  

(3) det(𝑇) ≠ 0 ⇔ 𝑇 is non-singular; and  

(4) 𝑑𝑒𝑡(𝑇 − 𝜆𝐼) is a polynomial, with complex coefficients, of degree 𝑛 in the variable 

𝜆.  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

96 
 

We are now in a position to take up once again, and to settle, the problem of the existence 

of eigenvalues.  

Let T be an operator on H. If we recall Problem 44-6, it is clear that a scalar 𝜆 is an 

eigenvalue of T ⇔ there exists a non-zero vector x such that (𝑇 − 𝜆𝐼)𝑥 = 0 ⇔ 𝑇 − 𝜆𝐼 is 

singular ⇔ det(𝑇 − 𝜆𝐼) = 0. The eigenvalues of T are therefore precisely the distinct roots of 

the equation  

det(𝑇 − 𝜆𝐼) = 0 (1) 

which is called the characteristic equation of T. It may illuminate matters somewhat if we 

choose a basis B for H, find the matrix [𝛼𝑖𝑗] of T relative to B, and write the characteristic 

equation in the extended form  

|

𝛼11 − 𝜆     𝛼12  … 𝛼1𝑛

𝛼21  𝛼22 − 𝜆       …       𝛼2𝑛

…             ……         …  
𝛼𝑛1 𝛼𝑛2 …  𝛼𝑛𝑛 − 𝜆

| = 0 

Our search for eigenvalues of T is reduced in this way to a search for roots of Eq. (1). 

Property (4’) tells us that this is a polynomial equation, with complex coefficients, of degree n in 

the complex variable 𝜆. We now appeal to the fundamental theorem of algebra, which guarantees 

that an equation of this kind always has exactly n complex roots. Some of these roots may of 

course be repeated, in which case there are fewer than n distinct roots. In summary, we have  

Theorem 4.1 : If T is an arbitrary operator on H, then the eigenvalues of T constitute a non-

empty finite subset of the complex plane. Furthermore, the number of points in this set does not 

exceed the dimension n of the space H.  

The set of eigenvalues of T is called its spectrum, and is denoted by 𝜎(𝑇). For future 

reference, we observe that 𝜎(𝑇) is a compact subspace of the complex plane.  

It should now be reasonably clear why we required in the definition of a Hilbert space 

that its scalars be the complex numbers. The reader will easily convince himself that in the 

Euclidean plane the operation of rotation about the origin through 90 degrees is an operator on 
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this real Banach space which has no eigenvalues at all, for no non-zero vector is transformed into 

a real multiple of itself.  

The existence of eigenvalues is therefore linked in an essential way to properties of the 

complex numbers which are not enjoyed by the real numbers, and the most significant of these 

properties is that stated in the fundamental theorem of algebra. 

 The mechanism of matrices and determinants turns out to be simply a device for making 

effective use of this theorem in our basic problem of proving that eigenvalues exist. We also 

remark that Theorem A and its proof remain valid in the case of an arbitrary linear 

transformation on any complex linear space of finite dimension 𝑛 >  0.  

Problems  

1. Let T be an operator on H, and prove the following statements:  

(a) T is singular ⇔ 0 ∈ 𝜎(𝑇);  

(b) if T is non-singular, then𝜆 ∈ 𝜎(𝑇) ⇔ 𝜆−1 ∈ 𝜎(𝑇−1);  

(c) if A is non-singular, then 𝜎(𝐴𝑇𝐴−1) = 𝜎(𝑇);  

(d) if 𝜆 ∈ 𝜎(𝑇), and if 𝑝 is any polynomial, then 𝑝(𝜆) ∈ 𝜎(𝑝(𝑇));  

(e) if 𝑇𝑘 =  0 for some positive integer 𝑘, then 𝜎(𝑇) = {0}.  

2. Let the dimension 𝑛 of 𝐻 be 2, let 𝐵 =  {𝑒1, 𝑒2} be a basis for H, and assume that the 

determinant of a 2 × 2 matrix [𝛼𝑖𝑗] is given by𝛼11.  

(a) Find the spectrum of the operator T on H defined by 𝑇𝑒1 = 𝑒2 and𝑇𝑒2 = −𝑒1.  

(b) If T is an arbitrary operator on H whose matrix relative to B is [𝛼𝑖𝑗], show 

that𝑇2 − (𝛼11 + 𝛼22)𝑇 + (𝛼11𝛼22 − 𝛼12𝛼21)𝐼 = 0. Give a verbal statement of 

this result.  

4.2  THE SPECTRAL THEOREM  

We now return to the central purpose of this chapter, namely, the statement and proof of 

the spectral theorem.  
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Let T be an arbitrary operator on H. We know by Theorem 61-A that the distinct 

eigenvalues of T form a non-empty finite set of complex numbers. Let 𝜆1, 𝜆2, … , 𝜆𝑚be these 

eigenvalues; let 𝑀1, 𝑀2, … , 𝑀𝑚be their corresponding eigenspaces; and let 𝑃1, 𝑃2, … , 𝑃𝑚be the 

projections on these eigenspaces. We consider the following three statements.  

I. The 𝑀𝑖’s are pairwise orthogonal and span H.  

II. The 𝑃𝑖’s are pairwise orthogonal, 𝐼 = ∑ 𝑃𝑖
∞
𝑖=1 and 𝑇 = ∑ 𝜆𝑖𝑃𝑖

∞
𝑖=1 .  

III. T is normal.  

We take the spectral theorem to be the assertion that these statements are all equivalent to 

one another. It was proved in the introduction to this chapter that I ⇒ II ⇒ III. We now complete 

the cycle by showing that II⇒ 1.  

The hypothesis that T is normal plays its most critical role in our first theorem.  

Theorem 4.2 If T is normal, then x is an eigenvector of T with eigenvalue 𝜆 ⇔ 𝑥 is an 

eigenvector of T* with eigenvalue 𝜆.  

Proof.  

Since T is normal, it is easy to see that the operator 𝑇 − 𝜆𝐼 (whose adjoint is T* −𝜆𝐼) is 

also normal for any scalar 𝜆. By Theorem 58-C, we have  

‖𝑇𝑥 − 𝜆𝑥‖ = ‖𝑇∗𝑥 − 𝜆𝑥‖ 

for every vector 𝑥, and the statements of the theorem follow at once from this.  

Theorem 4.3 If T is normal, then the 𝑀𝑖’s are pairwise orthogonal.  

Proof. 

Let 𝑥𝑖 and 𝑥𝑗 be vectors in 𝑀𝑖 and 𝑀𝑗for 𝑖 ≠ 𝑗, so that 𝑇𝑥𝑖 = 𝜆𝑖𝑥𝑖and 𝑇𝑥𝑗 = 𝜆𝑗𝑥𝑗. The 

preceding theorem shows that  
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𝜆𝑖(𝑥𝑖𝑥𝑗) = (𝜆𝑖𝑥𝑖𝑥𝑗) 

                = (𝑇𝑥𝑖𝑥𝑗) 

= (𝑥𝑖, 𝑇∗𝑥𝑗) 

                   = (𝑥𝑖, 𝜆𝑗𝑥𝑗) 

                 = 𝜆𝑗(𝑥𝑖𝑥𝑗) 

and since𝜆𝑖 ≠ 𝜆𝑗 it is clear that we must have (𝑥𝑖𝑥𝑗) = 0.  

Our next step is to prove that the 𝑀𝑖’s span H when T is normal, and for this we need the 

following preliminary fact.  

Theorem 4.4 : If T is normal, then each 𝑀𝑖 reduces T.  

Proof.  

It is obvious that each 𝑀𝑖 is invariant under T, so it suffices, by Theorem 59-C, to show 

that each 𝑀𝑖 is also invariant under T*. This is an immediate consequence of Theorem A, for if 

𝑥𝑖 is a vector in 𝑀𝑖, so that 𝑇𝑥𝑖 = 𝜆𝑖𝑥𝑖then 𝑇∗𝑥𝑖 = 𝜆𝑖𝑥𝑖 is also in 𝑀𝑖.  

Finally, we have  

Theorem 4.5 : If T is normal, then the 𝑀𝑖’s span H.  

Proof. 

The fact that the 𝑀𝑖’s are pairwise orthogonal implies, by Theorems 59-F and 59-G, that 

𝑀 = 𝑀1 + 𝑀2 + ⋯ + 𝑀𝑚is a closed linear subspace of H, and that its associated projection is  

𝑃 = 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑚 

Since each 𝑀𝑖 reduces T, we see by Theorem 59-E that 𝑇𝑃𝑖  =  𝑃𝑖𝑇 for each 𝑃𝑖. It follows 

from this that 𝑇𝑃 =  𝑃𝑇, so 𝑀 also reduces 𝑇, and consequently 𝑀⊥ isinvariant under T. If 
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𝑀⊥ ≠ {0}, then, since all the eigenvectors of T are contained in M, the restriction of T to 𝑀⊥ is 

an operator on a non-trivial finite-dimensional Hilbert space which has no eigenvectors, and 

hence no eigenvalues. Theorem 61-A shows that this is impossible. We therefore conclude that 

𝑀⊥  =  {0}, so M = H and the 𝑀𝑖’s span H.  

This completes the proof of the spectral theorem and, in particular, of the fact that if T is 

normal, then it has a spectral resolution  

𝑇 = 𝜆1𝑃1 + 𝜆2𝑃2 + ⋯ + 𝜆𝑚𝑃𝑚  (1) 

We now make several observations which will be useful in carrying out our promise to 

show that this expression for T is unique. Since the 𝑃𝑖’s are pairwise orthogonal, if we square 

both sides of (1) we obtain  

𝑇2 = ∑ 𝜆𝑖
2𝑃𝑖

𝑚

𝑖=1

 

More generally, if m is any positive integer, then  

𝑇𝑛 = ∑ 𝜆𝑖
𝑛𝑃𝑖

𝑚

𝑖=1

 (2) 

If we make the customary agreement that 𝑇0 = 𝐼, then the fact that ∑ 𝑃𝑖
𝑚
𝑖=1 shows that (2) 

is also valid for the case 𝑛 =  0. Next, let 𝑝(𝑧) be any polynomial, with complex coefficients, in 

the complex variable 𝑧. By taking linear combinations, (2) can evidently be extended to  

𝑃(𝑇) = ∑ 𝑃(𝜆𝑖)𝑃𝑖

𝑚

𝑖=1

 (3) 

We would like to find a polynomial 𝑝 such that the right side of (3) collapses to a 

specified one of the 𝑃𝑖’s, say 𝑃𝑗. What is needed is a polynomial 𝑝𝑗 with the property that 

𝑝𝑗(𝜆𝑖) = 0if 𝑖 ≠ 𝑗 and 𝑝𝑗(𝜆𝑗) =  1. We define 𝑝𝑗 as follows:  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

101 
 

𝑝𝑗(𝑧) =
(𝑧 − 𝜆1) … (𝑧 − 𝜆𝑗−1)(𝑧 − 𝜆𝑗+1) … (𝑧 − 𝜆𝑚)

(𝜆𝑗 − 𝜆1) … (𝜆𝑗 − 𝜆𝑗−1)(𝜆𝑗 − 𝜆𝑗+1) … (𝜆𝑗 − 𝜆𝑚)
 

Since 𝑝𝑗 is a polynomial, and since𝑝𝑗(𝜆𝑖) = 𝛿𝑖𝑗, (3) yields  

𝑃𝑗 = 𝑝𝑗(𝑇) (4) 

In order to interpret these remarks to our advantage, we point out that only three facts 

about (1) have been used in obtaining (4): the 𝜆𝑖’s are distinct complex numbers; the 𝑃𝑖’s are 

pairwise orthogonal projections; and 𝐼 = ∑ 𝑃𝑖
𝑚
𝑖=1 . By using these properties of (1), and these 

alone, we have shown that the 𝑃𝑖’s are uniquely determined as specific polynomials in T.  

We now assume that we have another expression for T similar to (1),  

𝑇 = 𝛼1𝑄1 + 𝛼2𝑄2 + ⋯ + 𝛼𝑘𝑄𝑘  (5) 

and that this is also a spectral resolution of T, in the sense that the 𝛼𝑖’s are distinct 

complex numbers, the 𝑄𝑖’s are non-zero pairwise orthogonal projections, and 𝐼 = ∑ 𝑄𝑖
𝑘
𝑖=1 . We 

wish to show that (5) is actually identical with (1), except for notation and order of terms. We 

begin by proving, in two steps, that the 𝛼𝑖’s are precisely the eigenvalues of T. First, since 𝑄𝑖 ≠

0, there exists a non-zero vector x in the range of 𝑄𝑖 and since 𝑄𝑖𝑥 = 𝑥 and 𝑄𝑖𝑥 = 0 for𝑗 ≠ 𝑖, we 

see from (5) that𝑇𝑥 = 𝛼𝑖𝑥, so each 𝛼𝑖 is an eigenvalue of T. Next, if 𝜆 is an eigenvalue of T, so 

that 𝑇𝑥 =  𝜆𝑥 for some non-zero 𝑥, then  

𝑇𝑥 = 𝜆𝑥                                           

= 𝜆𝐼𝑥                                   

= 𝜆 ∑ 𝑄𝑖

𝑘

𝑖=1

𝑥                       

= ∑ 𝜆𝑄𝑖

𝑘

𝑖=1

𝑥                        
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𝑎𝑛𝑑                    𝑇𝑥 = ∑ 𝛼𝑖𝑄𝑖𝑥

𝑘

𝑖=1

 

𝑠𝑜        ∑(𝜆 − 𝛼𝑖)𝑄𝑖𝑥

𝑘

𝑖=1

= 0                                                                 

Since the 𝑄𝑖𝑥’s are pairwise orthogonal, the non-zero vectors among them—there is at 

least one, for𝑥 ≠ 0 are linearly independent, and this implies that 𝜆 = 𝛼𝑖  for some 𝑖.  

These arguments show that the set of 𝛼𝑖s equals the set of 𝜆𝑖s, and therefore, by changing 

notation if necessary, we can write (5) in the form  

𝑇 = 𝜆1𝑄1 + 𝜆2𝑄2 + ⋯ + 𝜆𝑚𝑄𝑚 (6) 

The discussion in the preceding paragraph now applies to (6) and gives  

𝑄𝑖 = 𝑝𝑖(𝑇) (7) 

for every 𝑗. On comparing (7) with (4), we see that the 𝑄𝑗’s equal the 𝑃𝑗’s. This shows 

that (5) is exactly the same as (1) except for notation and the order of terms and completes our 

proof of the fact that the spectral resolution of T is unique.  

We conclude with a brief look at the matrix interpretation of statements I and II at the 

beginning of this section.  

Assume that I is true, that is, that the eigenspaces 𝑀1, 𝑀2, … , 𝑀𝑚of T are pairwise orthog- 

onaland span H. For each 𝑀𝑖, choose a basis which consists of mutually orthogonal unit vectors. 

This can always be done, for a basis of this kind called an orthonormal basis is precisely a 

complete orthonormal set for 𝑀𝑖. 

 It is easy to see that the union of these little bases is an orthonormal basis for all of H; 

and relative to this, the matrix of T has the following diagonal form (all entries off the main 

diagonal are under- stood to be 0):  
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We next assume that H has an orthonormal basis relative to which the matrix of 7 is 

diagonal.  

If we rearrange the basis vectors in such a way that equal matrix entries adjoin one 

another on the main diagonal, then the matrix of T relative to this new orthonormal basis will 

have the form (8). It is easy to see from this that T can be written in the form  

𝑇 = ∑ 𝜆𝑖𝑃𝑖

𝑚

𝑖=1

 

where the𝜆𝑖’s are distinct complex numbers, the 𝑃𝑖’s are non-zero pairwise orthogonal 

projections, and 𝐼 = ∑ 𝑃𝑖
𝑚
𝑖=1 . The uniqueness of the spectral resolution now guarantees that the 

𝜆𝑖’s are the distinct eigenvalues of T and that the 𝑃𝑖’s are the projections on the corresponding 

eigenspaces. The spectral theorem tells us that statements I, II, and III are equivalent to one 

another. The above remarks carry us a bit further, for they constitute a proof of the fact that these 

statements are also equivalent to  

IV. There exists an orthonormal basis for H relative to which the matrix of T is diagonal.  
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It is interesting to realize that the implication III ⇒ IV, which we proved by showing that 

III ⇒I and I⇒ IV, can be made to depend more directly on matrix computations. This proof is 

outlined in the last three problems below.  

Problems  

1. Show that an operator T on H is normal⇔ its adjoint T* is a polynomial in T.  

2. Let T be an arbitrary operator on H, and N a normal operator. Show that if 7 commutes 

with N, then T also commutes with N*.  

3. Let T be a normal operator on H with spectrum [𝜆1, 𝜆2, … , 𝜆𝑚], and use the spectral 

resolution of T to prove the following statements:  

(a) T is self-adjoint ⇔each 𝜆𝑖 is real; (b) T is positive ⇔ 𝜆𝑖 ≥ 0 for each 𝑖 (c) T is 

unitary ⇔ |𝜆𝑖| = 1 for each 𝑖.  

4. Show that a positive operator T on H has a unique positive square root; that is, show that 

there exists a unique positive operator A on H such that 𝐴2 = T.  

 

  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

105 
 

CHAPTER - 5 

5.1 THE DEFINITION AND SOME EXAMPLES  

A Banach algebra is a complex Banach space which is also an algebra with identity 1, 

and in which the multiplicative structure is related to the norm by the following requirements:  

(1) ‖𝑥𝑦‖ ≤ ‖𝑥‖‖𝑦‖;  

(2) ‖𝐼‖ = 𝐼.  

It follows from (1) that multiplication is jointly continuous in any Banach algebra, that is, 

that if 𝑥𝑛 → 𝑥and 𝑦𝑛 → 𝑦then 𝑥𝑛𝑦𝑛 → 𝑥𝑦 

(proof:  

‖𝑥𝑛𝑦𝑛 − 𝑥𝑦‖ = ‖𝑥𝑛(𝑦𝑛 − 𝑦) + (𝑥𝑛 − 𝑥)𝑦‖ 

                                ≤ ‖𝑥𝑛‖‖𝑦𝑛 − 𝑦‖ + ‖𝑥𝑛 − 𝑥‖‖𝑦‖ 

A Banach subalgebra of a Banach algebra A is a closed subalgebra of A which contains 

1. The Banach subalgebras of A are precisely those subsets of A which are themselves Banach 

algebras with respect to the same algebraic operations, the same identity, and the same norm.  

The definition of a Banach algebra is sometimes given without the restriction that the 

scalars are the complex numbers. The complex case, however, is the only one that concerns us, 

and by framing the definition as we do, we avoid the necessity of treating the additional 

complications which arise in the real case. We have further assumed, for the sake of simplicity, 

that every Banach algebra has an identity. It is possible, at a considerable sacrifice of clarity, to 

develop most of the important ideas without this assumption, and this is done whenever the 

primary purpose of the theory is the study of group algebras of locally compact but not discrete 

groups. Since our attention will be directed chiefly to the structure of operator algebras, there is 

no need for us to strain for the added generality obtained by not requiring the presence of an 

identity.  
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The Banach algebras of principal interest to us are described in the following examples. 

The reader will notice that they all consist of functions or operators and that the linear operations 

in all of them are defined pointwise. They can be classified in a general way into function 

algebras, operator algebras, or group algebras, according as multiplication is defined pointwise, 

by composition, or by convolution.  

Example 1. (a) One of the most important Banach algebras is the set 𝒞(X) of all bounded 

continuous complex functions defined on a topological space X. The case in which X is a 

compact Hausdorff space will have particular significance for our later work. If X has only one 

point, then 𝒞(X) can be identified with the simplest of all Banach algebras, the algebra of 

complex numbers.  

(b) Consider the closed unit disc 𝐷 =  {𝑧: |𝑧|  <  1} in the complex plane. The subset of 

𝒞(D) which consists of all functions analytic in the General Preliminaries on Banach Algebras 

303 interior of D is obviously a subalgebra which contains the identity. A simple application of 

Morera’s theorem from complex analysis shows that it is closed and is therefore a Banach 

subalgebra of 𝒞(D). This Banach algebra is called the disc algebra. It has a number of interesting 

proper- ties, which are, of course, intimately related to the special character of its functions.  

Example 2. (a) If B is a non-trivial complex Banach space, then the set 𝒞(B) of all operators on 

B isa Banach algebra. We assume that B is non-trivial in order to guarantee that the identity 

operator is an identity in the algebraic sense.  

(b) If we consider a non-trivial Hilbert space H, then 𝒞(H) is a Banach algebra. This is a 

special case of 𝒞(B), and it is important to observe that additional structure is present here, 

namely, the adjoint operation T→T*.  

(c) A-subalgebra of𝒞(H) is said to be self-adjoint if it contains the adjoint of each of its 

operators. Banach subalgebras of 𝒞(H)’s which are self-adjoint are called C*-algebras. We shall 

return to the subject of commutative C*-algebras in Chap. 14.  

(d) The weak operator topology on 𝒞(H) is the weak topology generated by all functions 

of the form T→(Tx,y); that is, it is the weakest topology with respect to which all these functions 
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are continuous. It is easy to see from the inequality|(𝑇𝑥, 𝑦) − (𝑇0𝑥, 𝑦)| ≤ ‖𝑇 − 𝑇0‖‖𝑥‖‖𝑦‖ that 

this topology is weaker than the usual norm topology, so that its closed sets are also closed in the 

usual sense. A C'*-algebra with the further property of being closed in the weak operator 

topology is called a W*-algebra. Algebras of this kind are also called rings of operators, or von 

Neumann algebras. They are among the most interesting of all Banach algebras, but their theory 

is quite beyond the scope of this book. 

Example 3. (a) If 𝐺 = {𝑔1, 𝑔2. . . , 𝑔𝑛} is a finite group, then its group algebra 𝐿1(𝐺) is the set of 

all complex functions defined on G. Addition and scalar multiplication are defined pointwise, 

and the norm by ‖𝑓‖ = ∑ |𝑓(𝑔𝑖)|𝑚
𝑖=1 . In order to see what underlies the definition of 

multiplication, it is convenient to regard a typical element 𝑓 of 𝐿𝑖(𝐺) as a formal sum ∑ 𝛼𝑖𝑔𝑖
𝑚
𝑖=1 , 

where 𝛼𝑖 is the value of 𝑓 at𝑔𝑖. With this interpretation, we use the given multiplication in G to 

define multiplication in 𝐿1(𝐺), as follows:  

(∑ 𝛼𝑖𝑔𝑖

𝑛

𝑖=1

) (∑ 𝛽𝑗𝑔𝑗

𝑛

𝑗=1

) = ∑ 𝛾𝑘𝑔𝑘

𝑛

𝑘=1

 (1) 

𝛾𝑘 = ∑ 𝛼𝑖𝛽𝑗

𝑔𝑖𝑔𝑗=𝑔𝑘

 (2) 

The meaning of the sum in (2) is that the summation is to be extended over all subscripts 

𝑖 and 𝑗 such that 𝑔𝑖𝑔𝑗 = 𝑔𝑘 . In effect, therefore, we formally multiply out the sums on the left of 

(1), and we then gather together all the resulting terms which contain the same element of G. 

With these ideas as an intuitive guide, we revert to our first point of view, in which the elements 

of 𝐿1(𝐺) are functions, and we see that our definition of multiplication can be expressed in the 

following way. If two functions f and g in 𝐿1(𝐺) are given, then their product, which is denoted 

by f *g and called their convolution, is that function whose value at 𝑔𝑘 is  

(𝑓 ∗ 𝑔)(𝑔𝑘) = ∑ 𝑓(𝑔𝑖)𝑔(𝑔𝑖)

𝑔𝑖𝑔𝑗=𝑔𝑘

  

                         = ∑ 𝑓(𝑔𝑘𝑔𝑗
−1)𝑔(𝑔𝑗)

𝑛

𝑘=1

 (3) 
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We note that if each element of G is identified with the function whose value is 1 at that 

element and 0 elsewhere, then G becomes a subset of 𝐿1(𝐺). Further, multiplication in G agrees 

with convolution in 𝐿1(𝐺), and the element of 𝐿1(𝐺) which corresponds to the identity in G is an 

identity for 𝐿1(𝐺). We conclude this description by observing that every element of G has norm 

1, so that ||1||  =  1, and that the basic norm inequality for a Banach algebra is satisfied:  

‖𝑓 ∗ 𝑔‖ = ∑|(𝑓 ∗ 𝑔)(𝑔𝑘)|

𝑛

𝑘=1

 

= ∑ |∑ 𝑓(𝑔𝑘𝑔𝑗
−1)𝑔(𝑔𝑗)

𝑛

𝑗=1

|

𝑛

𝑘=1

 

≤ ∑ ∑|𝑓(𝑔𝑘𝑔𝑗
−1)||𝑔(𝑔𝑗)|

𝑛

𝑗=1

𝑛

𝑘=1

 

= ∑ ∑|𝑓(𝑔𝑘𝑔𝑗
−1)||𝑔(𝑔𝑗)|

𝑛

𝑗=1

𝑛

𝑘=1

 

= ∑|𝑔(𝑔𝑗)|

𝑛

𝑘=1

∑|𝑓(𝑔𝑘𝑔𝑗
−1)|

𝑛

𝑗=1

 

= ∑|𝑔(𝑔𝑗)|

𝑛

𝑘=1

‖𝑓‖ 

= ‖𝑓‖ ∑|𝑔(𝑔𝑗)|

𝑛

𝑘=1

 

= ‖𝑓‖‖𝑔‖ 

(b) Let 𝐺 = {… , −2, −1,0, 1,2, … } be the additive group of integers. Its group algebra 

𝐿1(𝐺) is the set of all complex functions 𝑓 defined on 𝐺 for which ∑ |𝑓(𝑛)|∞
𝑛=−∞  converges. The 
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linear operations are defined pointwise, the norm by ‖𝑓‖ = ∑ |𝑓(𝑛)|∞
𝑛=−∞  and the convolution of 

𝑓 and 𝑔—see Eq. (3)—by  

(𝑓 ∗ 𝑔)(𝑛) = ∑ 𝑓(𝑛 − 𝑚)𝑔(𝑚)

∞

𝑛=−∞

 

Just as in (a), 𝐺 is contained in 𝐿1(𝐺) in a natural way, and 𝐿1(𝐺) isa Banach algebra. 

Any attempt to discuss the group algebra of a non- discrete topological group like the real line 

must clearly be based on an adequate theory of integration. It should also have available a theory 

of Banach algebras in which no identity is assumed to be present. These ideas constitute a rich 

and beautiful field of modern analysis. They are, however, outside the scope of this work.  

The Banach algebras described above are many and diverse, and there are yet others 

which we have not mentioned. Our attention in the following chapters will be centered on 𝒞(X)’s 

and commutative C*-algebras, but the general theory we develop is equally applicable to all. It is 

worthy of notice that an arbitrary Banach algebra A can be regarded as a Banach subalgebra of 

𝒞(A). Ina sense, therefore, Example 2a and its Banach subalgebras include all possible Banach 

algebras. To see this, we recall from Problem 45-4 that a→ 𝑀𝑎, where 𝑀𝑎(𝑥)  =  𝑎𝑥, isan 

isomorphism of A into 𝒞(A). It is easy to see that 𝑀1 is the identity operator on A, so all that 

remains is to observe that ‖𝑎‖ ≤ ‖𝑀𝑎‖ for every a (proof: ‖𝑀𝑎(𝑥)‖ = ‖𝑎𝑥‖ ≤ ‖𝑎‖‖𝑥‖shows 

that‖𝑀𝑎‖ ≤ ‖𝑎‖, and the fact that ‖𝑎‖ ≤ ‖𝑀𝑎‖ follows from  

‖𝑀𝑎‖ = sup{‖𝑀𝑎(𝑥)‖: ‖𝑥‖ ≤ 1} ≥ ‖𝑀𝑎(1)‖ = ‖𝑎‖ 

The mapping 𝑎 → 𝑀𝑎, is thus an isometric isomorphism of A onto a Banach subalgebra 

of 𝒞(A), and it allows us to identify the abstract Banach algebra A with a concrete Banach 

algebra of operators on A.  

5.2 REGULAR AND SINGULAR ELEMENTS  

Let A be a Banach algebra. We denote the set of regular elements in A by G, and its 

complement, the set of singular elements, by S. It is clear that G contains 1 and is a group, and 
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that S contains 0. Several important issues depend on the character of G and S. Our first 

resultalong these lines is  

Theorem 5.1 : Every element 𝑥 for which ‖𝑥 − 1‖ < 1 is regular, and the inverse of such an 

element is given by the formula 𝑥−1 = 1 + ∑ (1 − 𝑥)𝑛∞
𝑛=1  

Proof.  

If we put 𝑟 = ‖𝑥 − 1‖, so that 𝑟 <  1, then  

‖(1 − 𝑥)𝑛‖ ≤ ‖1 − 𝑥‖𝑛 = 𝑟𝑛 

shows that the partial sums of the series ∑ (1 − 𝑥)𝑛∞
𝑛=1  form a Cauchy sequence in 𝐴. 

Since A is complete, these partial sums converge to an element of 𝐴, which we denote by 

∑ (1 − 𝑥)𝑛∞
𝑛=1 . If we define 𝑦 by𝑦 = ∑ (1 − 𝑥)𝑛∞

𝑛=1 , then the joint continuity of multiplication in 

𝐴 implies that  

𝑦 − 𝑥𝑦 = (1 − 𝑥)𝑦                                                           

= (1 − 𝑥) + ∑(1 − 𝑥)𝑛

∞

𝑛=2

 

= ∑(1 − 𝑥)𝑛

∞

𝑛=1

 

= 𝑦 − 1                                                     

So𝑥𝑦 =  1. Similarly, 𝑦𝑥 =  1.  

We now use this as a tool to prove  

Theorem 5.2 : 𝐺 is an open set, and therefore 𝑆 is a closed set.  

Proof. 
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Let 𝑥0 be an element in 𝐺, and let 𝑥 be any element in 𝐴 such that‖𝑥 − 𝑥0‖ < 1/‖𝑥0
−1‖. 

It is clear that  

‖𝑥0
−1𝑥 − 1‖ = ‖𝑥0

−1 (𝑥 − 𝑥0)‖ 

≤ ‖𝑥0
−1‖‖𝑥 − 𝑥0‖ 

< 1                                  

so we see by Theorem 𝐴 that𝑥0
−1𝑥 is in 𝐺. Since 𝑥 = 𝑥0(𝑥0

−1𝑥), it follows that 𝑥 is also in 

𝐺, so 𝐺 is open.  

It was shown that every Banach space is locally connected, so A is also locally 

connected.   

Theorem 5.3 : The mapping 𝑥 → 𝑥−1 of G into G is continuous and is therefore a 

homeomorphism of G onto itself.  

Proof.  

Let 𝑥0 be an element of 𝐺, and 𝑥 another element of 𝐺 such that‖𝑥 − 𝑥0‖ < 1/(‖𝑥0
−1‖). 

Since  

‖𝑥0
−1𝑥 − 1‖ = ‖𝑥0

−1 (𝑥 − 𝑥0)‖ 

≤ ‖𝑥0
−1‖‖𝑥 − 𝑥0‖ 

<
1

2
 

we see by Theorem A that 𝑥0
−1𝑥 is in G and  

𝑥0
−1𝑥 = (𝑥0

−1𝑥)−1 

= 1 + ∑(1 − 𝑥0
−1𝑥)𝑛

∞

𝑛=1
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Our conclusion now follows from  

‖𝑥−1 − 𝑥0
−1‖ = ‖(𝑥−1 𝑥0 − 1)𝑥0

−1‖ 

≤ ‖𝑥0
−1‖‖𝑥−1 𝑥0 − 1‖ 

= ‖𝑥0
−1‖ ‖∑(1 − 𝑥0

−1𝑥)𝑛

∞

𝑛=1

‖ 

≤ ‖𝑥0
−1‖ ∑‖1 − 𝑥0

−1𝑥‖𝑛

∞

𝑛=1

 

= ‖𝑥0
−1‖‖1 − 𝑥0

−1𝑥‖ ∑‖1 − 𝑥0
−1𝑥‖𝑛

∞

𝑛=0

 

=
‖𝑥0

−1‖‖1 − 𝑥0
−1𝑥‖

1 − ‖1 − 𝑥0
−1𝑥‖

 

< 2‖𝑥0
−1‖‖1 − 𝑥0

−1𝑥‖ 

≤ 2‖𝑥0
−1‖‖𝑥 − 𝑥0‖ 

If 𝑥 is an element in 𝐴, it should always be kept in mind that the regularity or singularity 

of 𝑥 depends on 𝐴 as well as on 𝑥 itself. If 𝑥 is regular in A, and if we pass to a Banach 

subalgebra 𝐴’ of A which also contains 𝑥, then x may lose its inverse and become singular in 𝐴’. 

By the same token, if x is singular in A, and if A is regarded as a Banach subalgebra of a larger 

Banach algebra 𝐴’’, then x may acquire an inverse and become regular in 𝐴”. In the next section, 

we study certain elements in A which are singular and remain singular with respect to all 

possible enlargements of A.  

5.3  TOPOLOGICAL DIVISORS OF ZERO  

An element 𝑧 in our Banach algebra 𝐴 is called a topological divisor of zero if there 

exists a sequence {𝑧𝑛} in 𝐴 such that ‖𝑧𝑛‖ = 1 and either 𝑧𝑧𝑛 → 0 or 𝑧𝑛𝑧 → 0. Itis clear that 
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every divisor of zero is also a topological divisor of zero. We denote the set of all topological 

divisors of zero by 𝑍.  

Theorem  5.4 𝑍 is a subset of 𝑆.  

Proof.  

Let 𝑧 be an element of 𝑍 and {𝑧𝑛} a sequence such that ‖𝑧𝑛‖ = 1 and (say) 𝑧𝑧𝑛 → 0. If 𝑧 

were in 𝐺, then by the joint continuity of multi- plication we would have 𝑧−1(𝑧𝑧𝑛) = 𝑧𝑛 → 0, 

contrary to ‖𝑧𝑛‖ = 1. 

Our next theorem relates to the manner in which Z is distributed within S.  

Theorem 5.5 : The boundary of S is a subset of Z.  

Proof.  

Since 𝑆 is closed, its boundary consists of all points in 𝑆 which are limits of convergent 

sequences in 𝐺.  

We show that if 𝑧 is such a point, that is, if 𝑧 is in 𝑆 and there exists a sequence {𝑟𝑛} in 𝐺 

such that 𝑟𝑛 → 𝑧, then 𝑧 is in 𝑍. 

 First, we see from 𝑟𝑛
−1𝑧 − 1 = 𝑟𝑛

−1(𝑧 − 𝑟𝑛) that the sequence {𝑟𝑛
−1} is unbounded; for 

otherwise, we would have  

‖𝑟𝑛
−1𝑧 − 1‖ < 1 

for some 𝑛, so that 𝑟𝑛
−1𝑧, and therefore𝑧 = 𝑟𝑛(𝑟𝑛

−1𝑧), would be regular. Since {𝑟𝑛
−1} is 

unbounded, we may assume that‖𝑟𝑛
−1‖ → ∞. 

 If 𝑧𝑛, is now defined by𝑧𝑛 = 𝑟𝑛
−1/‖𝑟𝑛

−1‖, then our conclusion follows from the 

observations that ‖𝑧𝑛‖ = 1 and  

𝑧𝑧𝑛 =
𝑧𝑟𝑛

−1

‖𝑟𝑛
−1‖
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=
1 + (𝑧 − 𝑟𝑛)𝑟𝑛

−1

‖𝑟𝑛
−1‖

 

=
1

‖𝑟𝑛
−1‖

+ (𝑧 − 𝑟𝑛)𝑧𝑛 → 0         

In order to understand the significance of these facts, let us suppose that A is imbedded as 

a Banach subalgebra in a larger Banach algebra 𝐴’. 

 As we remarked in the previous section, an element which is singular in A may cease to 

be so in 𝐴’.  

However, if it is a topological divisor of zero in A, then it is in 𝐴’ as well, so it is singular 

in 𝐴’. The topological divisors of zero in A are thus “permanently singular,” in the sense that 

they are singular and remain so with respect to every possible enlargement of the containing 

Banach algebra. Theorem B tells us that no matter what happens to S as a whole in such a 

process, its boundary is “permanent” in this sense.  

5.4 THE SPECTRUM  

Let 𝑇 be an operator on a non-trivial Hilbert space. In the previous chapter, we defined 

the spectrum of T' to be the set  

𝜎(𝑇) = {𝜆: 𝑇 − 𝜆𝐼 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟} 

and we devoted a good deal of attention to the geometric ideas leading to this concept. 

We found—at least in the finite-dimensional case—that a number in 𝜎(𝑇) is a value assumed by 

T, in the sense that T acts on some non-zero vector as if it were scalar multiplication by that 

number. We shall see later that this formulation of the meaning of the spectrum has a much 

wider significance than we might at first suspect.  

Let us now consider an element z in our general Banach algebra A. By analogy with the 

above, we define the spectrum of x to be the following subset of the complex plane:  

𝜎(𝑥) = {𝜆: 𝑥 − 𝜆𝐼 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟} 
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Whenever it is desirable to express the fact that the spectrum of x depends on A as well 

as 𝑥, we use the notation 𝜎𝐴(𝑥). It is easy to see that 𝑥 − 𝜆𝐼 is a continuous function of 𝜆with 

values in A; and since the set of singular elements in A is closed, it follows at once that 𝜎(𝑥) is 

closed. We further observe that 𝜎(𝑥) is a subset of the closed disc{𝑥: |𝑥| < ||𝑥||}, for if 𝜆isa 

complex number such that|𝜆| ≥ ‖𝑥‖, then ‖𝑥/𝜆‖ < 1, ‖1 − (1 − 𝑥/𝜆)‖ < 1,1 − 𝑥/𝜆is regular, 

and therefore 𝑥 − 𝜆𝐼 is regular.  

Our first task is to establish the fact that 𝜎(𝑥) is always non-empty, and for this we need 

a few preliminary notions. The resolvent set of 𝑥, denoted by 𝜌(𝑥), is the complement of 𝜎(𝑥); it 

is clearly an open subset of the complex plane which contains {𝑧: |𝑧|  >  ||𝑧||}. The resolvent of 

𝑥 is the function with values in A defined on 𝜌(𝑥) by  

𝑥(𝜆) = (𝑥 − 𝜆𝐼)−1 

tells us that 𝑥(𝜆) is a continuous function of 𝜆 and the fact that 𝑥(𝜆) = 𝜆−1 (
𝑥

𝜆
− 1)

−1

 for 𝜆 =

0implies that 𝑥(𝜆) → 0 as 𝜆 → ∞. If 𝜆 and 𝜇 are both in𝜌(𝑥), then  

𝑥(𝜆) = 𝑥(𝜆)[𝑥 − 𝜇𝐼]𝑥(𝜇) 

= 𝑥(𝜆)[𝑥 − 𝜆𝐼 + (𝜆 − 𝜇)𝐼]𝑥(𝜇) 

= [𝐼 + (𝜆 − 𝜇)𝑥(𝜆)]𝑥(𝜇) 

= 𝑥(𝜇) + (𝜆 − 𝜇)𝑥(𝜆)𝑥(𝜇) 

𝑥(𝜆) − 𝑥(𝜇) = (𝜆 − 𝜇)𝑥(𝜆)𝑥(𝜇) 

This relation is called the resolvent equation.  
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Theorem  5.6 : 𝜎(𝑥) is non-empty.  

Proof.  

Let 𝑓 be a functional on 𝐴—that is, an element of the conjugate space A*—and define 

𝑓(𝜆) by𝑓(𝜆) = 𝑓(𝑥(𝜆)). It is clear that 𝑓(𝜆) is a complex function which is defined and 

continuous on the resolvent set 𝜌(𝑥). The resolvent equation shows that  

𝑓(𝜆) − 𝑓(𝜇)

𝜆 − 𝜇
= 𝑓(𝑥(𝜆)𝑥(𝜇)) 

and it follows from this that  

lim
𝜆→𝜇

𝑓(𝜆) − 𝑓(𝜇)

𝜆 − 𝜇
= 𝑓(𝑥(𝜇)2) 

so 𝑓(𝜆) has a derivative at each point of 𝜌(𝑥). Further,  

|𝑓(𝜆)| ≤ ‖𝑓‖‖𝑥(𝜆)‖ 

So𝑓(𝜆) → 0 as𝜆 → ∞. 

 We now assume that 𝜎(𝑥) is empty, so that 𝜌(𝑥) is the entire complex plane. Liouville’s 

theorem from complex analysis allows us to conclude that 𝑓(𝜆) = 0for all 𝜆. Since 𝑓 is an 

arbitrary functional on 𝐴,  implies that 𝑥(𝜆) = 0 forall 𝜆.  

This is impossible, for no inverse can equal 0, and therefore it cannot be true that 𝜎(𝑥) is 

empty.  

If the reader is surprised by the appearance of Liouville’s theorem in such a context, he 

should recall two facts. First, our proof is a special case of the above result, required the use of 

the fundamental theorem of algebra. And second, the fundamental theorem of algebra is most 

commonly proved as a simple consequence of Liouville’s theorem. It is therefore only to be 

expected that some tool from analysis comparable in depth with Liouville’s theorem should be 

necessary for the proof of Theorem A.  
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Now that we know that 𝜎(𝑥) is non-empty, we also know that it is a compact subspace of 

the complex plane. The number 𝑟(𝑥) defined by  

𝑟(𝑥) = sup{|𝜆|: 𝜆 ∈ 𝜎(𝑥)} 

is called the spectral radius of 𝑥. It is clear that0 ≤ 𝑟(𝑥) ≤ ‖𝑥‖. The concept of the 

spectral radius will be useful in certain parts of our later work.  

We recall that a division algebra is an algebra with identity in which each non-zero 

element is regular. The most important single consequence of Theorem A is  

Theorem 5.7 : If A is a division algebra, then it equals the set of all scalar multiples of the 

identity.  

Proof.  

We must show that if 𝑥 is an element of 𝐴, then 𝑥 equals 𝜆𝐼 for some scalar 𝜆. Suppose, 

on the contrary, that 𝑥 ≠ 𝜆𝐼 for every 𝜆.  

Then 𝑥 = 𝜆𝐼 ≠ 0for every 𝜆, 𝑥 − 𝜆𝐼 is regular for every 𝜆, and therefore 𝜎(𝑥) isempty. 

This contradicts Theorem 5.6 and completes the proof.  

The mapping 𝜆𝐼 → 𝜆 is clearly an isometric isomorphism of the set of all scalar multiples 

of the identity onto the Banach algebra C of all complex numbers.  

We may therefore identify this set with C; and in terms of this identification, any Banach 

algebra which is a division algebra equals C. This fact is the foundation on which we build the 

structure theory presented in the next chapter.  

It is obvious that C itself, which is the simplest of all Banach algebras, is a division 

algebra, so Theorem 5.7 characterizes C as the only Banach algebra with this property. In the 

next two theorems, we give some other interesting characterizations of C among all possible 

Banach algebras.  
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Since 0 is a divisor of zero, it is a topological divisor of zero in every Banach algebra. In 

the Banach algebra C, 0 is plainly the only topological divisor of zero. Conversely, we have  

Theorem 5.8 : If 0 is the only topological divisor of zero in A, then A = C.  

Proof. 

Let 𝑥 be an element of A. Its spectrum 𝜎(𝑥) is non-empty, so it has a boundary point A; 

and 𝑥 − 𝜆𝐼 is easily seen to be a boundary point of the set S of all singular elements.  

By Theorem, 𝑥 − 𝜆𝐼 is a topological divisor of zero, so it follows from our hypothesis 

that𝑥 − 𝜆𝐼 = 0 or 𝑥 = 𝜆𝐼.  

The basic link between multiplication in A and the norm is given by the inequality 

‖𝑥𝑦‖ ≤ ‖𝑥‖‖𝑦‖, and when A = C, this inequality can be reversed. 

 The following result shows to what extent this reversibility is true in general.  

Theorem 5.9 : If the norm in A satisfies the inequality ‖𝑥𝑦‖ ≥ 𝐾‖𝑥‖‖𝑦‖ for some positive 

constant K, then A = C.  

Proof. 

In the light of Theorem, it suffices to observe that the hypothesis here implies that 0 is the 

only topological divisor of zero.  

We next look into the question of what happens to the spectrum of an element x in A 

when A is enlarged.  

Theorem 5.10 : If A is a Banach subalgebra of a Banach algebra A’, then the spectra of an 

element 𝑥in 𝐴 with respect to 𝐴 and 𝐴’ are related as follows: (1) 𝜎𝐴′(𝑥) ⊆ 𝜎𝐴(𝑥); (2) each 

boundary point of 𝜎𝐴(𝑥) is also a boundary point of 𝜎𝐴′(𝑥).  

Proof.  
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If 𝑥 − 𝜆𝐼 is singular in 𝐴’, then it is certainly singular in 𝐴, so (1) is clear. To prove (2), 

we let 𝜆 be a boundary point of 𝜎𝐴(𝑥). 

 It is easy to see that 𝑥 − 𝜆𝐼 is a boundary point of the set of singular elements in 𝐴,  it is 

a topological divisor of zero in 𝐴.  

It is therefore a topological divisor of zero in 𝐴’ as well, so it is singular in 𝐴’ and 𝜆 is in 

𝜎𝐴′(𝑥). The fact that A is actually a boundary point of 𝜎𝐴′(𝑥) is immediate from (1), so the proof 

of (2) is complete.  

This result shows that in general the spectrum of an element shrinks when its containing 

Banach algebra is enlarged, and further, that since its boundary points cannot be lost in this 

process, it must shrink by “hollowing out.” An illuminating example of this phenomenon is 

provided by the disc algebra A of all complex functions which are defined and continuous on 

𝐷 = {𝑧: |𝑧| ≤ 1} and analytic in the interior of this set. If 𝑓is a function in A, then the maximum 

modulus theorem from complex analysis implies that  

‖𝑓‖ = 𝑠𝑢𝑝 {|𝑓(𝑧)|: |𝑧| ≤ 1}  

       = 𝑠𝑢𝑝 {|𝑓(𝑧)|: |𝑧| = 1}. 

This allows us to identify A with the Banach algebra of all the restrictions of its functions 

to the boundary of D, which is a Banach subalgebra of 𝐴’ = 𝒞({𝑧: |𝑧| = 1}). If we now consider 

the element 𝑓 in 𝐴 defined by 𝑓(𝑧)  = 𝑧, then it is easy to see that 𝜎𝐴(𝑓) equals 𝐷 and that 

𝜎𝐴′ (𝑓)equals the boundary of D.  
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5.5 THE FORMULA FOR THE SPECTRAL RADIUS  

Let 𝑥 be an element in our general Banach algebra A, and consider its spectral radius r(x), 

which is defined by  

𝑟(𝑥)  =  𝑠𝑢𝑝 {|𝜆|: 𝜆 ∈ 𝜎𝐴(𝑥)}.  

Now let 𝐴’ be the Banach subalgebra of 𝐴 generated by 𝑥, that is, the closure of the set of 

all polynomials in 𝑥. Theorem 67-E shows that 𝑟(𝑥) has the same value if it is computed with 

respect to 𝐴’:  

𝑟(𝑥)  =  𝑠𝑢𝑝 {|𝜆|: 𝜆 ∈ 𝜎𝐴′(𝑥)}.  

This suggests quite strongly that 𝑟(𝑥) depends only on the sequence of powers of 𝑥. The 

formula for 𝑟(𝑥) is given in Theorem A below, and our purpose in this section is to prove it. It is 

convenient to begin with the following preliminary result.  

Lemma : 𝜎(𝑥𝑛) = 𝜎(𝑥)𝑛.  

Proof.  

Let 𝜆 be a non-zero complex number and 𝜆1, 𝜆2, … , 𝜆𝑛its distinct nth roots, so that  

𝑥𝑛 − 𝜆𝐼 = (𝑥 − 𝜆1𝐼)(𝑥 − 𝜆2𝐼) … (𝑥 − 𝜆𝑛𝐼) 

The statement of the lemma follows easily from the fact that 𝑥𝑛 − 𝜆𝐼 is singular ⇔ 𝑥 −

𝜆𝑖𝐼 is singular for at least one 𝑖.  

Theorem 5.11 : 𝑟(𝑥) = lim‖𝑥𝑛‖
1

𝑛.  

Proof.  

Our lemma shows that 𝑟(𝑥𝑛)  =  𝑟(𝑥)𝑛, and since 𝑟(𝑥𝑛) ≤ ‖𝑥𝑛‖, we have 𝑟(𝑥)𝑛 ≤

‖𝑥‖𝑛or 𝑟(𝑥) ≤ ‖𝑥𝑛‖
1

𝑛 for every 𝑛. To conclude the proof, it suffices to show that if 𝑎 is any real 
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number such that 𝑟(𝑥)  < 𝑎, then ‖𝑥𝑛‖
1

𝑛 ≤ 𝑎 for all but a finite number of n’s, and this we now 

do.  

If |𝜆| = ‖𝑥‖, then  

 

𝑥(𝜆) = (𝑥 − 𝜆𝐼)−1 

= 𝜆−1 (
𝑥

𝜆
− 1)

−1

 

= −𝜆−1 (1 −
𝑥

𝜆
)

−1 

 

         = −𝜆−1 [∑
𝑥𝑛

𝜆𝑛

∞

𝑛=1

] (1) 

If 𝑓 is any functional on A, then (1) yields  

𝑓(𝑥(𝜆)) = −𝜆−1 [𝑓(1) + ∑ 𝑓 (
𝑥𝑛

𝜆𝑛
)

∞

𝑛=1

] 

                                = −𝜆−1 [𝑓(1) + ∑ 𝑓(𝑥𝑛)𝜆−𝑛

∞

𝑛=1

] (2) 

for all|𝜆| > ‖𝑥‖. Therefore, 𝑓(𝑥(𝜆)) is an analytic function in the region |𝜆| > 𝑟(𝑥) and 

since (2) is its Laurent expansion for |𝜆| > ‖𝑥‖, we know from complex analysis that this 

expansion is valid for |𝜆| > 𝑟(𝑥). If we now let a be any real number such that 𝑟(𝑥)  < 𝛼 < 𝑎, 

then it follows from the preceding remark that the series ∑ 𝑓(𝑥𝑛/𝛼𝑛)∞
𝑛=1  converges, so its terms 

form a bounded sequence.  

Since this is true for every f in A*, this shows that the elements𝑥𝑛/𝛼𝑛 form a bounded 

sequence in A. Thus  
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‖𝑥𝑛/𝛼𝑛‖ ≤ 𝐾 

or ‖𝑥𝑛‖ ≤ 𝐾
1

𝑛𝛼 for some positive constant K and every n. Since 𝐾
1

𝑛𝛼 < 𝑎 for every 

sufficiently large n, we have ‖𝑥𝑛‖
1

𝑛 ≤ 𝑎 for all but a finite number of n’s, and the proof is 

complete.  

5.6  THE RADICAL AND SEMI-SIMPLICITY  

Our final preliminary task is to reach a clear understanding of what is meant by the 

statement that our Banach algebra A is semi-simple. For this, it is necessary to give an adequate 

definition of the radical of A, and this in turn depends on a detailed analysis of its ideals.  

We recall that an deal in A was defined in Sec. 45 to be a subset J with the following 

three properties:  

(1) 𝐼 is a linear subspace of A;  

(2)𝑖 ∈ 𝐼 ⇒ 𝑥𝑖 ∈ 𝐼 for every element 𝑥 ∈ 𝐴;  

(3) 𝑖 ∈ 𝐼 ⇒ 𝑖𝑥 ∈ 𝐼 for every element 𝑥 ∈ 𝐴.  

If 𝐼 is assumed only to satisfy conditions (1) and (2) [or conditions (1) and (3)], it is 

called a left ideal (or a right ideal). Yor the sake of clarity and emphasis, an ideal in our previous 

sense—one which satisfies all three of these conditions—is often called a two-sided ideal. In the 

commutative case, of course, these three concepts coincide with one another.  

The properties of the ideals in A are closely related to the properties of its regular and 

singular elements. In our work so far, the statement that an element z in A is regular has meant 

that there exists an element y such that 𝑥𝑦 =  𝑦𝑥 =  1. For our present purposes, it is useful to 

refine this notion slightly, as follows. We say that x is left regular if there exists an element y 

such that 𝑦𝑥 =  1; and if 𝑥 is not left regular, it is called left singular. The terms right regular 

and right singular are defined similarly. If 𝑥 is both left regular and right regular, so that there 

exist elements 𝑦 and 𝑧 such that 𝑦𝑥 =  1 and 𝑥𝑧 =  1, then the relation  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

123 
 

𝑦 =  𝑦1 =  𝑦(𝑧𝑧)  =  (𝑦𝑥)𝑧 =  1𝑧 = 𝑧 

shows that 𝑥 is regular in the ordinary sense and that 𝑥−1 = y = z.  

The concept of maximality for two-sided ideals was introduced in Sec. 41. By analogy, 

we define a maximal left ideal in A to be a proper left ideal which is not properly contained in 

any other proper left ideal. A straightforward application of Zorn’s lemma shows that any proper 

left: ideal can be imbedded in a maximal left ideal; and since the zero ideal {0} is a proper left 

ideal, maximal left ideals certainly exist. We now define the radical R of A to be the intersection 

of all its maximal left ideals. It will be convenient to abbreviate this definition by writing 𝑅 =∩

𝑀𝐿𝐼. 𝑅 is clearly a proper left ideal.  

These ideas can be formulated just as easily for right ideals as for left ideals, and there is 

no reason for giving preference to either side over the other. The purpose of the following chain 

of lemmas is to show that B is also the intersection of all the maximal right ideals in A, that is, 

that𝑅 =∩ 𝑀𝑅𝐼.  

Lemma : If 𝑟 is an element of R, then 1 − 𝑟 is left regular.  

Proof.  

We assume that 1 − 𝑟 is left singular, so that  

𝐿 = 𝐴(𝐼— 𝑟)  =  {𝑥 − 𝑥𝑟: 𝑥 ∈ 𝐴} 

is a proper left ideal which contains 𝐼 − 𝑟. We next imbed L in a maximal left ideal 7, 

which of course also contains 𝐼 − 𝑟. Since r is in R, it is also in M, and therefore 𝐼 = (𝐼 − 𝑟) +

𝑟isin M. This implies that M = A, which is a contradiction.  

Lemma : If 𝑟 is an element of R, then 𝐼 − 𝑟 is regular.  

Proof.  

By the lemma just proved, there exists an element 𝑠 such that 𝑠(1 —  𝑟)  =  1, so s is 

right regular and 𝑠 = 1 − (−𝑠)𝑟. The fact that R is a left ideal implies that (— 𝑠)𝑟 is in R along 
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with r, and another application of the preceding lemma shows that 1 − (−𝑠)𝑟 =  𝑠 is left 

regular. Since s is both left regular and right regular, it is regular with inverse 𝐼 − 𝑟, so 𝐼 − 𝑟 is 

also regular.  

Lemma : If 𝑟 is an element of R, then 𝐼 − 𝑥𝑟 is regular for every 𝑥.  

Proof.  

𝑅 is a left ideal, so 𝑥𝑟 is in R and the statement follows from the lemma just proved.  

Lemma : If 𝑟 is an element of 𝐴 with the property that 𝐼 − 𝑥𝑟 is regular for every 𝑥, then 𝑟 is in 

𝑅.  

Proof. 

We assume that 𝑟 is not in R, so that 𝑟 is not in some maxi- mal left ideal M. It is easy to 

see that the set  

𝑀 + 𝐴𝑟 = {𝑚 + 𝑧𝑟: 𝑚 ∈ 𝑀 𝑎𝑛𝑑 𝑥 ∈ 𝐴} 

is a left ideal which contains both 𝑀 and𝑟, so 𝑀 +  𝐴𝑟 =  𝐴and 

𝑚 + 𝑥𝑟 = 1  

for some mand x. It now follows that 1 —  𝑧𝑟 =  𝑚 is a regular element in M, and this is 

impossible, for no proper ideal can contain any regular element.  

The effect of these lemmas is to establish the equality of two sets:  

∩ 𝑀𝐿𝐼 =  {𝑟: 1 − 𝑥𝑟 𝑖𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥} (1) 

Precisely the same arguments, when applied to maximal right ideals, show that  

∩ 𝑀𝑅𝐼 =  {𝑟: 1 − 𝑟𝑥 𝑖𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥} (2) 
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We now prove that all four of these sets are the same by showing that the two sets on the 

right of (1) and (2) are equal to one another. By sym- metry, it evidently suffices to prove the  

Lemma : If 𝐼 − 𝑥𝑟is regular, then 𝐼 − 𝑟𝑥 is also regular.  

Proof.  

We assume that 𝐼 − 𝑥𝑟 is regular with inverse  

𝑠 = (𝐼 − 𝑥𝑟)−1 

This means, of course, that (1 —  𝑥𝑟)𝑠 =  𝑠(1—  𝑥𝑟)  =  1. We leave it to the reader to 

show, by a simple computation, that  

(𝐼 − 𝑟𝑥)(𝐼 + 𝑟𝑠𝑥) = (𝐼 + 𝑟𝑠𝑥)(𝐼 − 𝑟𝑥) = 1 

so that 𝐼 − 𝑟𝑥isregular with inverse 1 +  𝑟𝑠𝑥. (The formula for (1 —  𝑟𝑧)−1 is less 

mysterious than it looks, as the reader can see by inspecting the meaningless but suggestive 

expressions  

𝑠 = (𝐼 − 𝑥𝑟)−1 = 1 + 𝑥𝑟 + (𝑥𝑟)2 + ⋯ 

and  

(𝐼 − 𝑟𝑥)−1 = 1 + 𝑟𝑥 + (𝑟𝑥)2 + (𝑟𝑥)3 + ⋯                        

= 1 + 𝑟𝑥 + 𝑟𝑥𝑟𝑥 + 𝑟𝑥𝑟𝑥𝑟𝑥 + ⋯ 

= 1 + 𝑟(1 + 𝑥𝑟 + 𝑥𝑟𝑥𝑟 + ⋯ )𝑥   

= 1 + 𝑟𝑠𝑥                                          

We summarize our results in  

Theorem 5.12 : The radical R of A equals each of the four sets in (1) and (2) and ts therefore a 

proper two-sided ideal.  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli      

126 
 

A is said to be semi-simple if its radical equals the zero ideal {0}, that is, if each non-zero 

element of A is outside of some maximal left ideal.  

It will be observed that the ideas discussed above are purely algebraic in nature. They can 

be applied not only to our Banach algebra A, but also to any algebra or ring with identity.  

Our interest, however, is in A, notably, the fact that the set S of all singular elements in A 

is closed.  

We begin by noting that if J is any ideal in A (left, right, or two- sided), then by the joint 

continuity of the algebraic operations, its closure [ is an ideal of the same kind. Next, since any 

proper ideal is contained in the proper closed set S, the closure of any proper ideal is a proper 

ideal of the same kind. It is an easy step from these facts to  

Theorem 5.13 : Every maximal left ideal in A is closed.  

Proof.  

If any maximal left ideal L is not closed, then L is a proper subset of the proper left ideal 

L; and this cannot happen, for it contradicts the maximality of L.  

Taken together, the above two theorems yield.  

Theorem 5.14  The radical R of A is a proper closed two-sided ideal.  

Theorem 5.15 :If I is a proper closed two-sided ideal in A, then the quotient algebra 𝐴/𝐼is a 

Banach algebra.  

Proof.  

We have,  𝐴/𝐼 is a non-trivial complex Banach space with respect to the norm defined by  

‖𝑥 + 𝐼‖ = inf{‖𝑥 + 𝑖‖: 𝑖 ∈ 𝐼} 

Further, 𝐴/𝐼 is clearly an algebra with identity 1 + 𝐼, and  

‖1 + 𝐼‖ = inf{‖1 + 𝑖‖: 𝑖 ∈ 𝐼} ≤ ‖𝐼‖ = 1 
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The multiplicative inequality for the norm is easily proved as follows:  

‖(𝑥 + 𝐼)(𝑦 + 𝐼)‖ = ‖𝑥𝑦 + 𝐼‖ 

= inf{‖𝑥𝑦 + 𝑖‖: 𝑖 ∈ 𝐼} 

                         ≤ inf{‖(𝑥 + 𝑖1)(𝑦 + 𝑖2)‖: 𝑖1, 𝑖2 ∈ 𝐼} 

≤ inf{‖𝑥 + 𝑖1‖‖𝑦 + 𝑖2‖: 𝑖1, 𝑖2 ∈ 𝐼} 

                                         ≤ inf{‖𝑥 + 𝑖1‖: 𝑖1 ∈ 𝐼} inf{‖𝑦 + 𝑖2‖: 𝑖2 ∈ 𝐼} 

= ‖𝑥 + 𝐼‖‖𝑦 + 𝐼‖ 

All that remains is to show that ‖1 + 𝐼‖ = 1; and since we already have ‖1 + 𝐼‖ ≤ 1, 

this is an immediate consequence of the fact that ‖1 + 𝐼‖ = ‖(1 + 𝐼)2‖ ≤ ‖1 + 𝐼‖2 implies 1 ≤

‖1 + 𝐼‖.  

Theorem 5.16 𝐴/𝑅 is a semi-simple Banach algebra.  

Proof. 

It suffices to observe that the natural homomorphism 𝑥 → 𝑥 +  𝑅 of 𝐴 onto 𝐴/𝑅 induces 

a one-to-one correspondence between the maximal left ideals in A and those in 𝐴/𝑅.  
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